HEAT TREAT RADIO

Heat Treat Radio #127: The Case for Modular Vacuum Heat Treating


In this episode of Heat Treat Radio, host Doug Glenn invites Dennis Beauchesne of ECM USA to explore the technology, benefits, scalability, and sustainability of modular heat treating systems. Together, they discuss how shared utilities, automated transfers, and adaptable heating cells can replace multiple standalone furnaces without compromising quality or precision. Learn how these systems streamline and simplify operations for future expansion — one cell at a time.

Below, you can watch the video, listen to the podcast by clicking on the audio play button, or read an edited transcript.




The following transcript has been edited for your reading enjoyment.

Introduction

Doug Glenn: I am very privileged to have with me today, Dennis Beauchesne from ECM USA. We’re going to be talking about modular heat treating systems, which is a growing category of equipment.

ECM Synergy Center (00:50)

Doug Glenn: Tell me about ECM’s Synergy Center, which is where you are at right now, on the shop floor.

The ECM Flex 600TG vacuum furnace located in the ECM Synergy Center Source: ECM USA

Dennis Beauchesne: I’m standing here in the middle of our Synergy Center. It’s about a 5,000-square-foot facility that is dedicated to proving out client parts for testing various processes, mostly LPC, but we also do a number of other processes here. We have a full metallurgical lab, 3D microscope, a number of tools, including a CMM that we can do before and after heat treat distortion testing for clients that want to know how much their parts move.

It’s a dedicated center just for clients to use. We also use the center for pre-completion of installations, final testing, and training, such as training on maintenance, understanding the software, and how everything works together.

Doug Glenn: It’s proof of process plus much more — helping clients’ proof of process.

Dennis Beauchesne: Absolutely. That’s a big part of convincing people that this process is for them and that it works on their part. We can send them ten different reports of an exact same material and part, but they want to know what their part will do.

What is Modular Heat Treating? (02:50)

Doug Glenn: On a very basic, rudimentary level, what is modular heat treating and how does it differ from what might be considered standard or normal heat treating?

Dennis Beauchesne: A modular heat treat system is one that works together to have more than one furnace working in the same platform. You may have a shop that has five or six vacuum furnaces separated — they each have their own door, vacuum system, electrical supply, quench motors…those types of components. Or you may have a series of batch IQ furnaces for carburizing; those systems are one off, which means they are individual, independent systems.

In a modular system, you try to utilize those facilities for the use of multiple heating chambers. Instead of having one vacuum furnace with one set of pumps and one gas quench motor, what we would do is have three to eight heating cells that would be utilizing one quench, depending on the process timing; that’s all done with an internal transfer car and we try to utilize one vacuum system. It’s much smaller than what you would have for three, four, or even eight cells.

If you had oil or high pressure gas quenching, which is what’s dominating right now in the modular heat treat business, you could supply basically six batch IQ hot zones to one oil quench.

The savings then are huge simply by removing five or six other quench tanks in front of this system, as well as leveraging the floor space (and the number of pits you have to dig). Other advantages including utility savings and utilizing equipment across a number of heating chambers.

Doug Glenn: This modular approach is basically separate chambers that are dedicated to doing whatever that chamber is doing, and they are all in some way interconnected. For standard units, you would heat up, pre-process, do the actual process itself, cool down, all in the same chamber. In a modular unit, you move from chamber to chamber to do each of those separate steps.

Dennis Beauchesne: Yes, I refer to it as a continuous batch.

Doug Glenn: Continuous batch. We were talking before we actually hit the record button with your colleague there, Allison DeAngelo, who just got done visiting the Heat Treat Boot Camp. We were talking about different types of furnaces, and we started talking about continuous vacuum, which of course, is almost a misnomer — a vacuum can’t be continuous because you have to open it up and break the vacuum to get stuff out. Anyhow, we talked about it basically being a batch, right? A batch furnace that’s continuous, a continuous batch furnace.

Benefits of Modular Heat Treating (06:35)

Now that we have a basic understanding of what these modular systems are, why would companies want to move from the standard type of heat treating system to a modular system?

Dennis Beauchesne: Manpower. If you are running five or six vacuum furnaces, you are going to need a number of people to open the doors, put new loads in, those kinds of tasks. With a modular system, you only have one entry or one exit area. Therefore, you are only going to load once every 15-20 minutes, and the system is going to take over and control that load going through the system.

In addition, especially in a carburizing atmosphere situation, you can have every load be a different case depth — a different process in each cell — and then the next load that goes in that same cell can be totally different from the one before. For instance, if you had a batch IQ, you typically use the same carbon potential, and you are typically going to run the next load almost identical to the one before. In contrast, with the modular system, each cell can run a different process every load.

It’s also easier to integrate automation if you are doing capacity increases.

Throughput Comparison (08:00)

Doug Glenn: What is the comparison of throughput between a standard unit and a modular unit?

Dennis Beauchesne: The throughput comparison is interesting because you typically can use a little higher temperature for a carburizing and a little higher carbon potential, and of course that’s what we specialize in here with the modular systems. You can achieve about a 30-40% gain in your cycle time. That furnace is operating very close to 100% occupancy, because when that load is done, you are moving it out right into the gas quench. Then, the next load comes and goes right into it.

Doug Glenn: You are able to increase your throughput because you have basically 100% utilization of the equipment or very close to that. Comparatively, you don’t necessarily have that in the standard equipment.

Product Quality Comparison (09:15)

Doug Glenn: Do modular systems produce higher quality products?

Dennis Beauchesne: The quality of the parts coming out of the system is improved. A vacuum environment is a very clean environment, especially if we are considering atmosphere and low pressure carburizing — it’s in a vacuum. We typically do everything in high pressure gas quenching. However, even in oil quenching under vacuum, you are going to have a much cleaner part.

Also in low pressure carburizing, the carburizing is much more uniform throughout the part because we heat it to temperature under nitrogen before the part gets to austenitizing temperature to start attracting carbon. We make sure that the full part, that’s the tooth, the root, every piece of the part, is at temperature before we start adding carbon to the load, which makes a more uniform case depth, and therefore makes a stronger part.

Doug Glenn: Since each module, each chamber, is dedicated to doing what it is supposed to do, it seems like the consistency and the reliability of the parts being processed in a modular system have a much better chance of being higher quality.

Dennis Beauchesne: You do not have six different variable chambers or six different variable systems. You just have to look at monitoring the connection between those and understanding that the vacuum levels are all the same across the levels and across the cells. Each cell can meet a different temperature and run a different process, but those are consistent across the board.

Typical Dedicated Cells/Chambers (11:10)

Doug Glenn: What would be the typical dedicated cells/chambers of a modular system?

Dennis Beauchesne: It is dependent on the processes. They are most widely used for vacuum carburizing. For pre-oxidation and preheating, we usually use an air oven outside of the system, and we connect that with an external loader. Before the load goes into the modular system, the load will go through a regular air oven, be heated to around 700°F (400°C), and then the load will be moved in.

For sintering and those kinds of applications, there is a debind step or a preheat step that would be done in one cell. Some of the processes that can be done in a modular system include:

  • Low pressure carburizing
  • Low pressure carbon nitriding (LPC)
  • FNC (ferritic nitrocarburizing)
  • Nitriding
  • Debinding
  • Sintering
  • Neutral hardening

The most prominent process right now is LPC, and that is being used all over the world in these systems.

Advantages of a Modular Unit for Captive Heat Treaters (12:53)

Doug Glenn: Why would a modular unit be beneficial for a captive heat treater, someone who does their own in-house heat treating, which probably means they’ve got potentially high volume, low variability as far as their workloads?

Dennis Beauchesne: The modular unit has many different advantages. First of all, floor space. You are going to save a lot of floor space by not having multiple furnaces set up separately. You will also save utilities because you would not have as many vacuum pumps or electrical systems running these furnaces on their own. You will have some shared service and utilities in that fashion.

Doug Glenn: That would also likely lead to maintenance cost savings as well, correct?

Dennis Beauchesne: Yes, it all goes down the line. Anything that you have multiples of, you are going to have much less costs than on a joint system. The modular system might be a little larger than one singular unit, but there will be fewer of them.

For vacuum carburizing applications in a captive shop, the quality and cleanliness of the part is very, very important. Gas quenching lends itself to no oil in your plant, no washers necessary for a post-quench. Typically, there’s a washer before the process starts, but you do not have to have any wash to get the oil off of the parts with a modular unit — you do not have to reclaim the oil or the water from the washer. You would not have waste oil in your plant either or any oil on your plant floor. These are some of the reasons some of the larger captive shops have gone to the modular systems.

Also, safety: There are no open flames with a modular unit, no risks of fire on the systems. They are also easier to maintain. For a fully operational, let’s say, eight-cell system for high production, captive operation, it would only take about five hours to cool that whole system down if you had to go in and work on the whole system. In comparison, it’s going to take you three to four days sometimes to cool down a typical atmosphere, high-temperature furnace.

It also takes time to heat the system up again. In a modular system, it takes about an hour and a half to heat the system up again and then you are ready to start running. That means now you can schedule your downtime on weekends or holidays. You do not have to have staff present to run anything.

You also do not have to have a secondary equipment, like Endo generators running to feed the carburizing gas. The carburizing gas is using acetylene out of cylinders, it’s not a regenerative system. You do not need a separate piece of equipment to feed to the furnace.

Another benefit is CapEx expansion. Typically, captive heat treaters do not want to buy everything upfront because their volumes are going to increase over time. In the beginning, they typically only need one or two cells ready to do a small amount of production so they can prove out the production and prove out the system. Then they can start building the system with more cells and more capacity later on. Generally, it’s two to three days of downtime to add a cell to a system. It’s very convenient to do that with a modular system. All of the utilities are typically alongside the modular system so that you can easily add those or add a cell to it over a short period of time, and those cells can be ordered a year or two down the road whenever you might need that.

You also can order peripheral equipment, like extra temper ovens or additional automation. You can add a robotics system to the layout as well. That’s why captive shops are very interested.

Finally, workforce: It’s a little bit easier to get someone to work on a modular system. These systems are completely clean and white. The one located in our Synergy Center has been there for eight years. We use it every single day, and it’s a very clean aesthetic environment for someone to work in. These systems are also water cooled, which means not a lot of extra heat in the building around you to work in.

Advantages of a Modular Unit for Commercial Heat Treaters (17:59)

Doug Glenn: What are some advantages of modular units for commercial heat treating?

Dennis Beauchesne: On the commercial heat treat side, modular units are typically useful because you can get multiple processes out of similar cells and you can have a system that has oil and a gas quench.

You can have a lot of flexibility in that one system that you have in the plant. I’ve visited hundreds of captive and commercial heat treaters. They generally have a number of furnaces in one area of the plant, and a number of furnaces in another area of the plant. A modular system gives you all the capability in one machine and one tool: oil quenching, gas quenching, FNC, nitriding low pressure, carburizing, carbonitriding, and neutral hardening all in one piece of equipment.

Automation and Robotics with Modular Heat Treating (18:57)

Doug Glenn: What automation and robotics advantages are there with modular systems?

Dennis Beauchesne: This is the new trend. People that have modular systems are now considering, “How do I automate the system to get more production out of it?” And what we’ve been doing the last five years especially is implementing systems that use CFC fixtures.

CFC fixtures are very robust in the furnace but sensitive to being controlled outside. Therefore, what we try to do is have the CFC fixtures be utilized in an automation that no humans have to interact with it. We usually use robots for external loaders and internal loaders to move the fixtures through the process.

This causes you to have a lighter load, which means less heating time, less energy being consumed. Also, the fixtures last three to four times longer if they’re not damaged. But of course, all of these systems can be using regular alloy steel as well, and we can fixture different parts. You can use baskets, we are now doing bulk loading where we have parts that are filled into baskets and then processed. We are doing that with vacuum carbonizing as well, not just neutral hardening.

So it’s really interesting to see how the limits are being pushed, as well as the different materials that we are gas quenching now. I know 20-25 years ago, we were quenching some simple materials that were very high hardenability, and today we’re quenching a lot of less hardenability steels.

Doug Glenn: Is that primarily due to increase of pressure in the quench?

Dennis Beauchesne: It’s pressure, it’s flow, it’s the intensity of the gas going through the parts. It’s also heat removal as well — heat exchangers, removing the heat out of the load faster. We also have reversing gas quench motors to reverse the flow inside from top to bottom, bottom to top, in the middle of the cycle.

Sustainability of Modular Heat Treating (22:24)

Doug Glenn: Do these systems promote sustainability and greenness?

Dennis Beauchesne: Absolutely, especially when it comes to carburizing. These systems have been compared against typical atmosphere carburizing cycles, and only about 4% of the carburizing time has gas injection, when we are actually injecting acetylene and having hydrocarbons being used in the process.

If you took the same cycle times, seven or eight hours of a carburizing cycle, you are flowing Endo gas or nitrogen methanol in the system for that full time. In contrast in a vacuum carburizing system, it’s 4-5% of the time of the cycle that you’re injecting into the furnace. Ultimately, you only have about 10% of the CO2 output that you would have in a typical atmosphere furnace.

As mentioned previously, there’s also no oil in your plant. You’re not reclaiming oil out of the water and the wash or off the floor or in your car when you leave your heat treat shop.

How Does the Modular Heat Treating System Work? (23:40)

Doug Glenn: Let’s talk through the process a little bit. You provided us with figures to aid in describing the process. We have included these. Describe how the system works.

Dennis Beauchesne: This animation is a plan view of one of our Flex systems. In the center, going left to right, is a tunnel section. This tunnel section is about an 8-foot diameter. It has an automated loader that moves down left to right or horizontally, and it transfers loads from each cell to another, in and out.

On the bottom left is a loading/unloading chamber. In that loading/unloading chamber, we remove the air once the load is put in there, and then we balance the vacuum on that cell to the tunnel’s vacuum. Then we’re capable of moving that load to an available heating cell, and that would be on the right of the system — on the top right or the bottom right of the tunnel, those are heating cells. Then recipe for that particular load will be loaded into that cell. While that load is processing, another load will be moving into the tunnel and into the other heating cell as well.

On the top left is the gas quench cell, which could be in this orientation or instead have an exit on the back as well. In this system, you could do neutral hardening, carbon nitriding, LPC, a number of the processes. This is a very valuable tool, especially in a commercial heat treat heat treat shop.

Doug Glenn: Is this whole unit, including all four chambers under vacuum? I noted there are separation doors on the purge and the entry chamber. Can this area be vacuum sealed?

Dennis Beauchesne: Yes. There are vacuum seals on the loading/unloading chamber on the bottom left and then the top left. The gas quench also has a seal from a pressure standpoint. The two heating chambers have a graphite door — we call it the flap door, and it just flaps and it doesn’t really seal actually against another face of graphite. It’s graphite-to-graphite. We pull vacuum out of there through the tunnel to create the central vacuum pressure in the system. We also pull vacuum from the cell itself, and we could also have a separate door on the front of the unit if the process necessitates that or if we feel that a door is needed there by a client.

In a normal state or a standard unit, there are no hot seals on the door, only vacuum seals on the loading/unloading chamber and the gas quench.

Doug Glenn: In the animation, your vacuum pumps are down in the bottom right, correct?

Dennis Beauchesne: Exactly, that’s a process pump.

Doug Glenn: What is located in the top left?

Dennis Beauchesne: On the top left, we have a gas quench tank. We want to ensure we have enough gas pressure and volume there to quench the load quickly. It’s very important to get the gas through the gas quench quickly.

ECM Flex 600TG vacuum furnace with two added heating cells / Source: ECM USA

Now, we have added two more additional heating cells and a central tunnel section. In essence, you just doubled the space, doubled the capacity of the unit, where you only added 50% of the space of what you had for capacity before.

We are still utilizing the same gas quench and the same loading/unloading cell. We only added utilities for the two heating cells, not for a whole gas quench or oil quench capability there; this can be added in a very short time.

Doug Glenn: Now I’m gonna go let this video roll here for a minute. There we go.

ECM Flex 600TG vacuum furnace with four added heating cells for six heating  cells total

Dennis Beauchesne: So now we added another 50% capacity with two more heating cells (six heating cells total) and a tunnel section. Typically, what you want to do is to have the tunnel sized for about five years out for your capacity and then buy the cells as you need them and have it grow so then the tunnel is ready to implement.

We have just tripled the capacity of this installation, and we are only still using the same gas quench and the same loading/unloading cell. Generally, this system could go to eight cells and have just one gas quench, that’s our typical orientation.

Doug Glenn: It looks like we also added a discharge side here. Whereas before we were going in and out.

Dennis Beauchesne: Yes, this adds to the efficiency of the system because the load is already in the gas quench when it’s finishing, so it just exits out the back, out the door.

Doug Glenn: Now what do we have here?

ECM Flex 600TG vacuum furnace processing different treatments in each cell. See animation above to watch the animation in motion.

Dennis Beauchesne: We have the loads entering, and the loads will go to the first cell that is available (empty). Then that recipe would be downloaded for that cell, and then the next load will go to the next available heating cell and download that recipe into that cell. These could be two different loads.

One load could be for neutral hardening; one could be for carburizing. One could be for carburizing in a low case depth. The other one could be carburizing at a deeper case. In this case, we just see the gas quench on here, but this tunnel could also be outfitted with an oil quench as well, and you could have one load go into gas, quench one load, go into oil quench or both going to either.

Doug Glenn: This gives people a sense of what the process looks like.

Processes and Materials for the Modular System (30:29)

Doug Glenn: Are there any processes or materials that do not make sense to process them through one of these systems?

Dennis Beauchesne: If you are doing a lot of annealing and normalizing, those are longer cycles. There is some regulated cooling that occurs. This is not really the type of equipment investment that you would want to make for those processes. If you were going to use it for a few loads in your plant where you received parts that weren’t annealed or you wanted to try to anneal a part for a particular process before you went to full production, you could certainly use a modular system for that, but it’s not a cost effective methodology. Neither would we recommend preheating in the cell. However, it is very flexible for a number of other processes that we have mentioned.

The size of the part is also important to note. These systems are typically 24 inches wide and about 39 inches long and about 28 inches high. However, we will soon have a new system, the Flex Max, a 12-9-9 system. It’s a 36×48 unit that comes with an oil quench and is modular, like this. We can either do an oil quench or a slow cool cell on that system. So, we will have that capability of 36×48 in that modular system.

Other than that, restrictions on material? Very few there. Like I said, you would not want to do annealing and normalizing on a lot of parts, but you could do it in these units.

Doug Glenn: It sounds like the sweet spot is surface modification type applications, and some sintering is possible with dedicated chambers.

Dennis Beauchesne: Yes, sintering and brazing is also possible.

Doug Glenn: Does that include aluminum brazing?

Dennis Beauchesne: Not aluminum brazing, but some brazing applications.

Expenses with Modular Heat Treating Systems (33:03)

Doug Glenn: What would be considered capital expenses for this modular system?

Dennis Beauchesne: As far as capital expenses, it’s not a furnace-to-furnace comparison. Clients always ask how much our furnace is. But companies need to first take two steps back and take a look at their incoming material, how they would like to be able to modify that incoming material in their heat treat process to make sure that their outgoing quality is higher than it is today. That’s the kind of benefit that this type of modular system gives you — a better quality part, safety in your plant, and a better quality work environment with being able to turn the system off and not need additional personnel around.

These are all factors that have to be considered when thinking about the CapEx expenditure and investment. When we consider these factors, a modular system investment is a much better situation than looking at a furnace-to-furnace replacement, and that’s really the thought process that clients need to go through to understand the actual investment and value of the system.

Doug Glenn: What about the operational expenses?

Dennis Beauchesne: For instances, if you had a batch IQ sitting there, you would typically keep it running whether it has a load in it or not. With a modular system, you just shut off that cell that you’re not using. It does not take any more energy. If you are not working five days a week, you do not use it on the weekends — you shut it off. You do not use it during Christmas shutdown or any holiday shutdown, vacation shutdown. You’re able to shut it off and that means saving a lot of energy and labor by having it off.

Also, in the opposite way, you could run it lights out if you wanted, as well. You could stock up a number of loads on the automation before you leave, have the system operate it, run it, and have the load come back out before the morning. You could have it time start as well, if you wanted to start it on Monday at 5 AM, but you will not be there till 8 AM. You would come in and the furnace would be hot and ready to run a process.

There are a number of operational advances over the typical operational heat treat that’s out there today.

Doug Glenn: How does maintenance work with these systems? Say your heating element goes bad in cell number three, do I have to shut the whole system down to fix or can I fix number three and leave the rest of the system up and running?

Dennis Beauchesne: In this situation if you had a tunnel like we showed, you would typically shut off that cell; that is, if you knew that heating element was out or it wasn’t heating properly, you could shut off that cell, de-validate is what we call it, and then keep running the rest of the system until you had a window in your production that you could shut the whole system to get into that heating element.

If you had a system with doors on the front, it could be possible to go in the back while the system is operating. Then, it would be all based on your safety requirements for your plant and those kinds of things.

To do that, we have another system called the Jumbo, and it is much more flexible in the maintenance world. It has a vacuum car that moves down on rails and docks and mates with every heating cell on the system. In that line, the heating cell can actually be isolated from the rest of the line. You would just slide it back (It’s on wheels, it slides back about three feet away from the line), you put in a new piece of safety fence, and you continue to run your line. You can completely lock out/tag out that cell and work on it completely.

Doug Glenn: How would you approach a vacuum leak since the whole system is connected, right? I believe you mentioned these are graphite-on-graphite doors.

Dennis Beauchesne: You would want to fix the leak before you move on. Especially if it’s a bad leak. If it’s something that’s causing you to not maintain your process pressure, you certainly don’t want to do that, and that’s true with every vacuum piece of equipment.

ECM Modular Systems (38:55)

Doug Glenn: How many of these modular type systems does ECM have out in the marketplace?

Dennis Beauchesne: The Flex is the most popular modular system, which we discussed with the animation. We also have a number of Jumbos systems, and the unit in our Synergy Center is called a Nano, which has become more and more popular these days. The Nano has three different size chambers, but they’re typically smaller, 20x24x10 inch high size chamber. I explained a little bit about the Flex and the Jumbo is the same.

Out of those three systems, we have more than 350 modular systems, not just the heating cells, but more than 350 systems that are out in the marketplace today operating, running parts every day, running millions and millions of parts every week. Those systems are comprised of about 2,000 heating cells. As much as people hear about this being a new technology, it has actually been around about 30 years, and many companies have been using these systems and have replaced a number of pusher furnaces and those style furnaces for high-capacity installations especially.

Doug Glenn: Okay, that sounds good. I really appreciate your time.


About the Guest

Dennis Beauchesne
General Manager
ECM USA

Dennis Beauchesne joined ECM over 25 years ago and has since amassed extensive vacuum furnace technology experience with over 200 vacuum carburizing cells installed on high pressure gas quenching and oil quenching installations. Within the last 10 years, his expertise has expanded to include robotics and advanced automation with the heat treat industry high-demand for complete furnace system solutions. As General Manager of ECM USA, Dennis oversees customer supply, operations and metallurgical support for Canada, U.S., and Mexico for ECM Technologies. He has worked in the thermal transfer equipment supply industry for over 30 years.

For more information: Contact Dennis at DennisBeauchesne@ECM-USA.com.



Heat Treat Radio #127: The Case for Modular Vacuum Heat Treating Read More »

Heat Treat Radio #126:  HIP Finds New Life in Modern Manufacturing

Hot isostatic pressing, or HIP, is experiencing a powerful resurgence across industries from aerospace to nuclear energy as manufacturers look for new ways to scale up. This panel of HIP experts explores how renewed investment, government collaboration, and additive manufacturing are driving HIP’s next era of growth. From large-scale production to powder-to-part innovations, discover why this decades-old process is suddenly critical to the future of U.S. manufacturing. 

In this episode, Heat Treat Radio host, Doug Glenn, is joined by Cliff OrcuttAmerican Isostatic Presses, IncOscar MartinezBodycoteVictor SamarovSynertech PMSoumya NagOak Ridge National LaboratoryMike ConawayIsostatic Forging International; and Dave GandyEPRI.

Below, you can watch the video, listen to the podcast by clicking on the audio play button, or read an edited transcript.




The following transcript has been edited for your reading enjoyment.

Introduction (00:05) 

Doug Glenn: Welcome everyone to another episode of Heat Treat Radio. We have gathered a panel of experts to discuss hot isostatic pressing (HIP). I’ve asked the panel to bring us up to date on the latest developments and trends in the HIP market.  

I want to jump into the questions here quickly so we can move through and let these experts do the talking. But I want these six gentlemen to very briefly introduce themselves.

Cliff, go ahead with your background, please.

Cliff Orcutt: Yes, I’m the vice president of the American Isostatic Presses. I’m also chairman of the International HIP Committee. I’ve been in isostatic pressing over forty-five years. I started building equipment and then began installing it. Now I’m mainly selling it. Our company is a small company which has supplied equipment to forty countries around the world.

Doug Glenn: Okay, very good. Victor, how about you?

Victor Samarov: I work for Synertech PM Technologies. My background goes back to the Soviet Union in Russia where I got my education and started to get involved in powder metal technology and HIP. I’ve been a part of pioneering the sophisticated and challenging tasks of building jet and rocket engines from powder materials and, since 2000, working in the United States in near net shape and net shape HIPing of parts and materials for critical applications.

Doug Glenn: Alright, thank you. That’s great. All right, Soumya, how about you?

Soumya Nag: Thanks, Doug, for having me. And good afternoon everybody. My name is Soumya Nag. I am a material scientist and metallurgist at Oak Ridge National Laboratory. I work on different types of materials and manufacturing processes to get large scale components.

The reason why I’m here is that I’m leading a big effort under the Department of Energy Office of Nuclear Energy’s a AMMT program — advanced materials and manufacturing technology program. This program actually looks at power metal HIP technology to make large scale components.

Doug Glenn: Super. And we’re going to talk about large scale things in a little bit here. Mike, how about you?

Mike Conaway: I’m the managing director of Isostatic Forging International, and we own operate and technically support about fifteen HIPs around the world.

I’ve had a lifetime involvement with HIP equipment design, construction operation maintenance. I started at Battelle when I was nineteen years old, I think. Cliff has got me beat on the youth point and maybe on a few other points too. Except for six years as a Navy pilot, I’ve done nothing else except HIP my entire life.

Our current development efforts are very large HIPs and very small HIPs at the lab scale tailored for additive manufacturing.

Doug Glenn: Appreciate your service, by the way, in the Navy. That’s great.

Mike Conaway: Well, it was great fun. Great to look back on.

Doug Glenn: Super. David, how about you?

David Gandy: Yeah, I’m a principal technical executive in EPRI’s nuclear materials areas. Doug indicated my background in metallurgy and welding for, I guess, the last fifteen years or so. I’ve spent time in advanced manufacturing looking at a variety of different topics, including PM and HIP. I have been in the business for a little more than forty years.

We’re all getting a little gray.

Doug Glenn: All well experienced, well-seasoned. All right, Oscar.

Oscar Martinez: Oscar Martinez. I’m the youngest of the group and learning from everybody here. I’m the regional sales manager for HIP North America, so I cover six different facilities in the North American market. I’m a metallurgical engineer by background. I have been in the oil and gas industry for about eight years with fader analysis and then jumped into HIP and product fabrication. Happy to be here; thanks for the invite.

Doug Glenn: Appreciate you joining us.

A New Renaissance of HIP? (7:41) 

The first question really deals with what has been bringing interest back to back to HIP. It seems like a lot of what we’re hearing about HIP processing deals with 3D printing and additive manufacturing. 

Is that the primary driver of the new renaissance of HIP? 

Victor Samarov: No, I wouldn’t say so. Basically, there are three areas of “HIPing.” The first has been rising steadily through decades, and that is HIPing of castings. You take a bad casting and bring it to the level of a better material by healing porosity cracks and changing the microstructure. 

The second area, which you mentioned, is 3D printing, which is, to some extent similar. HIPing of 3D-printed parts is similar to HIPing of castings, but there is more emphasis not on healing porosity but on changing the microstructure and making it more uniform and homogeneous. However, the parts are much smaller by far, and the share of the market is not large. Bodycote and others probably have a better understanding of this.

The third area is making parts from powders, which has been steadily at a relatively low level. This is because the only major industries interested in this have been aerospace, rocket engines, and oil and gas, all of which are  well developed in Europe and Sweden. For example, there’s a company that has been doing very large parts for that for decades. 

Recently, I mean the last fifteen years, we have to thank not only the Department of Energy (DOE) but David Gandy who was an enthusiast and a pioneer pushing this technology forward. There is much more interest from the nuclear industry in replacing very heavy forgings, which take years to fabricate and still usually are not good quality, by powdered metals.  

This leads to open doors in many other aspects because most of the nuclear parts are large, and many of them are larger than the existing HIP furnaces. So large that it requires 4 meter, 3 meter, 5 meter, etc. — we can discuss. So, the new driver to PM HIP is mainly from the nuclear industry with large parts since they bring a lot of technical problems, serious problems.  

This is very important, and this is the major perspective for HIP: rockets engines will still be there, aerospace will still be there, but nuclear is a new horizon.  

Doug Glenn: David, what’s driving the new renaissance from your perspective? It seems that there is somewhat of a renaissance of HIPing, more activity. The nuclear market, will you address that?  

David Gandy: Certainly  the nuclear area. We are looking to build quite a number of reactors over the next 30 years. In fact, we’re discussing 600 to 800 gigawatts of new build, which is quite enormous compared to what we have today. 

Much of this activity is being driven by things like data centers. There’s a lot of construction of data centers planned over the next ten years even, but certainly it will continue to grow. There’s a lot of additional power that is needed for things like electric vehicles. There’s a bit of work going on around that. 

In general, as we modernize our world, electricity certainly becomes more in demand, and we have to meet those demands. The other part of this is just looking at carbon issues and trying to reduce the overall carbon footprint in the world. Nuclear electric power provides a very clean generating product that can be used throughout the world. 

Doug Glenn: Larger parts seem to be a driver in HIP as well.  

The issue with getting larger HIP parts is actually building the equipment to carry out HIPing because, as the equipment gets larger in diameter, for example, the complexity and the engineering of it becomes extremely difficult. Soumya, can you address this aspect?  

Soumya Nag: There are very different aspects to what we are referring to when we say large parts. As you mentioned, in terms of whether you can HIP large parts, that is obviously a drawback. The other is, as you go into more complex parts or one-of-a-kind parts, can you make it cost effective and can you make it perform as well as your cast-forged counterparts? 

That’s a big question. We have a sizable team at Oakridge working on looking at U.S. domestic manufacturing resilience. Can we actually make customized parts by different manufacturing modalities and use different materials that could fit to that manufacturing scheme to produce components that are built to perform the way you want them to?  

PM HIP forms a big part of that portfolio. Using additive manufacturing along with PM HIP, which we call convergent manufacturing because we are converging two different manufacturing modalities using similar or even disciplined materials, is something that we are extremely focused on. 

Now what is advantage of additive manufacturing? The big advantage to additive manufacturing is design flexibility and customization of the parts, which helps your end product. Like Victor mentioned, all aspects of PM HIP are still good in terms of the densification, powder consolidations, and other factors, that are still as you would expect it to form. 

You are basically coupling a kind of technology: first, a newer process in the case of additive manufacturing with, second, one which has greater flexibility, that is PM HIP, a relatively well known technology.  

Click below for HIP technical articles

Doug Glenn: Let’s talk to the guys who are out there selling this process and/or building the equipment. First, Oscar, what are you seeing? What are the toll processing changes?

Oscar Martinez: The majority of what toll HIP service is going to see is castings by a magnitude of 60 or 80% of the business as a whole as of now. I have seen a lot more over the last couple of years on 3D printing and additive manufacturing.  

I do want to say that additive manufacturing has been growing in different markets as well. In the medical market, it is a little bit more established. We have seen the medical market take on some of the porous coating and those new technologies that help.  Within the aerospace market, I think it’s getting closer and closer to being more of a critical component. 

There is still a gap between those two industries. However, the business is starting to grow. For companies that are doing this, I’m noticing they are increasingly starting to get involved in having additive manufacturing either in-house with their own machines or through a sub-contractor. I do agree that in the near future castings are always going to be predominantly the factor. 

The last aspect is there has to be a cost analysis. Your absolutely right on this, Victor. I’m seeing it on the additive manufacturing side; they want to implement rapid cooling and they want to implement different cycles and different properties to get various properties from the material itself. However, there’s a difference whenever we’re talking about toll HIP service. If they want to do those, then those fall into dedicated cycles, which are much more expensive.

So, there has to be a kind of in between where we consolidate features and processes, because price is going to be the leader in terms of how fast it grows in the market. 

Doug Glenn: Mike, what are you seeing in your organizations?  

Mike Conaway: We’ve run about 250,000 HIP cycles, and 95% of those are castings. 

To lay the foundation of what we consider a small or large part: to me a small part is something that’s less than 8 inches in diameter, a medium-sized part is maybe 2 feet, and current large parts are about 5 to 6 feet in diameter, though we are now  trying to make parts that may be as large as 12 or 15 feet in diameter. 

We have to have some idea of what scale we’re talking about of these parts. That being said, we are essentially all castings, with very little powder metal.  

Doug Glenn: Cliff, any drivers that you’re seeing for HIP?  

Cliff Orcutt: The main driver is that as the world keeps advancing and as we have higher technologies and computers with FEA and so forth, we’re looking for stronger, lighter, faster materials.  

The performance of materials in general is increasing throughout every industry, whether that’s a car or an airplane or a printer. Also, the technology is spreading worldwide faster because communication and the internet. I believe the United States used to have the lock on HIP, and now China and Russia and other places are all on par with us. It’s spreading throughout the whole world, and it snowballs too. 

Initially, it was slow, but now it’s snowballing faster and faster. 3D printing is an exciting technology that has brought about new applications, but I think even other applications are just growing faster and spreading.   

The Origin of HIP (20:12)

Doug Glenn: Is the origin of the HIPing process U.S.-based?  

Mike Conaway: It’s like asking, “who had the first airplane?” Everybody agrees it was the Wright Brothers.  Similarly, it’s agreed that HIP was invented at Battelle Memorial Institute in Columbus, Ohio. I came to Battelle a few years after it was invented, and I was in on the industrialization of the process. Obviously, some serious work has been done in Russia and China, but that’s where it came from. That’s where Cliff’s father and I worked together — at Battelle — and we consider ourselves “Fathers of the Industrialization of the HIP Process.” 

Doug Glenn: You’re not going to take credit for creating it, though, for the internet?  

Mike Conaway: No, no, that was Edwin Hodge, Stan Paprocki, and Henry Saller.  

Doug Glenn: Well, your humility is showing through here, Mike.   

HIP Worldwide (21:37) 

Doug Glenn: Let’s address how the technology is spreading across the world. 

Are there any major new players either on the manufacturing of equipment side or the use of the equipment side around the world?  

Cliff Orcutt: There are both players, manufacturing, and end users. As far as manufacturers, we’re now seeing there are five Chinese domestic manufacturers. There are new ones in Russia, Korea, and India. There’s also a major player in Spain; that’s Hyperbaric. They have been building high pressure equipment, but not necessarily HIP. We see companies like that opening up and starting to build. We don’t know which ones will survive, because HIP is an up and down market. We’ve seen some companies come and go — vacuum generators, and on and on. We will see how it will all play out.  

We have seen new manufacturers, as far as users or toll producers. There are large companies in China now starting up. Korea has some, India is probably the next big market, maybe ten years behind. 

Victor Samarov: I want Cliff to add more, because Cliff has wonderful stories. We’re talking mainly about metals, but Cliff is a great proponent of ceramics, and ceramics not only has great applications but requires different HIP equipment for high temperature and for high pressures. Ceramics is also the future.  

Cliff Orcutt: Yes, we do see a lot of ceramics. Everything from braces and teeth to ball bearings for electric motors, boron carbide armor, military applications, hafnium carbide, and odium carbide. Those things are coming. 

One of the hindrances to HIP is the cost of raw materials. People tell us, if you could make silicon nitride powder cheaper, we’d HIP everything out of silicon nitride.  

Soumya Nag: One thing I wanted to add is we talked about HIPing cast metal parts and several materials: HIPing is also used to densify or “heal” additive parts as well. You can look at an AM part, and we usually go through a HIPing process to kind of heal what we call the lack of fusion type of porosities, or even in some cases the gas porosities work as well if your operating temperature is not too high where the gas can come out again. HIP is being used for a lot of use cases for castings. You can actually HIP using powder for alloys that cannot be forged. So that’s another specialized use case for HIPing as well. 

Interactions with the DOD and DOE (25:16) 

Doug Glenn: Let’s jump into discussing how the DOD and the DOE are pressing hard on the industry to come up with a 4-meter HIP unit. 

David, can you tell us what the driving force is here, what we’re trying to accomplish, and why it’s a challenge?  

David Gandy: So much of this started back around 2017 when we started a DOE project. In that DOE project, we were looking at utilizing the new scale reactor design to try to produce components out of powder metallurgy HIP. We worked with Syntech quite a bit in that area, trying to build large components like the reactor head and other parts throughout. Those, ultimately, would go to about 10 feet in diameter. We are currently restricted right now by the size of the HIP units that we’ve been working on, so we’re only making things on the order of 60 or 70 inches. 

The real driver there comes out of our success in producing very large components that are near net shape — we would like to be able to expand that to be able to do very large parts. The 4 meter came from a little bit of the work around the projects with the Department of Energy (DOE). It also came from DOD, which was beginning to look at whether we can actually make big parts for nuclear reactors that sit on a submarine, an aircraft carrier, or another boat. 

How do we actually make some of those large parts? There is quite an interest from the DOD and from the DOE in trying to really push the technology. We kind of settled in that 4 meter range; it might be a little bigger, it might be a little smaller, but to make some of the large parts that we’re talking about, we need to have a much larger HIP unit than is available today. 

Doug Glenn: Are the larger parts for a nuclear reactor specifically or are we talking about a variety of different large parts? 

David Gandy: Parts of them are for the nuclear reactor, but there are a number of other components, like large valves or large pump housings — many different components that could be produced with this technology. 

Doug Glenn: What are the main impediments to a 4 meter HIP unit?  

Cliff Orcutt: Like anything that’s new, there are unknowns, and the big one is the ROI along with the cost of doing something on that scale. Many of us are looking at it; companies such as Bodycote are considering larger units and MTC is considering larger units. The U.S. government at one time had the largest HIP in the world. Now it’s owned by Japan. We are hoping the U.S. government will step up and try to do a large project again. 

“There’s unknowns and the big one is the ROI and the cost of doing something on that scale.”

We went to the moon and we did other things, but we’ve kind of pulled back. We hardly have large forging capability in the U.S. anymore, and we need to invest in these kinds of technologies and push this forward.  

David Gandy: I’d like to build just a little bit on what Cliff said. In terms of building reactors in the U.S. to support the civil fleet — the civil nuclear reactors — quite frankly, we don’t have the forging capacity in the U.S. that we once had to do that. 

So this would actually supplement the forging capabilities and allow us to reshore some of those capabilities in the U.S.  

Oscar Martinez: That is a good point, David, and it is part of where PM HIP will jump in and bridge the gap between the two. 

One thing I wanted to mention regarding what Cliff said about the ROI is that the biggest factor for HIP companies — like Bodycote and others out there — is making sure that we have the nuclear side. We have already seen what the ramp up is going to look like and everything. 

For us, if a HIP unit is not running, it’s not making money. So, we need to make sure that HIP unit is always running, and that it’s going to pay for itself. With these large units, the price of it doesn’t just double from previous one, it exponentially goes up.  

Victor Samarov: Double? It’s quadruple! 

Oscar Martinez: I know the DOD and DOE are working closer together to have more synergy in terms of what components they need to process. But I also think that in the industrial side of things, like general industrial, anything with heavy equipment, any of those components that probably were not something liable to use of HIP because of the size or price, it would be good to start looking at how we can incorporate those other markets to see if they would also use some of that equipment or those HIP services for their equipment.  

David Gandy: On the DOD side of the house, we have something called AUS, which is the agreement between Australia, the U.S., and the UK, wherein we’re actually going to be building quite a number of ships and submarines over the next few decades. That’s going to change the way we look at our supply chain. In trying to build these components, we need to have additional forging, casting, additive manufacturing, and HIP capabilities — we need to have it all. It cannot happen without a number of different technologies engaged.   

The Path to Commercial (34:00)

Doug Glenn: In discussing these additional needs and supply chain logistics, Victor mentioned that the commercial viability of the 4 meter is difficult. Victor, could you expand? 

Victor Samarov: If ATLAS HIP appears tomorrow, we’re ready to make parts with it. There is powder supply and we know how to make the casts. With some small underwater stones, we can make the parts, but we’ve been waiting for this HIP system for at least ten years.   

“If ATLAS HIP appears tomorrow, we’re ready to make parts with it.” -Victor Samarov

There is no commercial company to build it, and there is no commercial company to order it unless it’s the U.S., Chinese, or Korean government. The technological idea is based on very advanced developments done by EPRI and other scientists in joining already manufactured power parts. 

We did try it already. We made very large parts that were cut in half and then joined by electron beam welding. It may be this faster route to provide U.S. industry with very large parts: first make parts as large as they can be and then electron-beam weld them. 

Working with David Gandy’s new scale projects, one part was so large that we had to split it into six segments. So, we made the segments and then they were successfully electron-beam welded. Practically, we were keeping all the advantages of powder metallurgy and HIP: lead time, material quality, faster development, so on and so forth. So, this may be a very viable direction.  

Doug Glenn: Mike, is that the path to commercial viability? 

Mike Conaway: I’m not quite sure. I call it jumbo additive manufacturing where you make these parts that have to be cut apart in, in concept, and then put together physically — that’s the additive manufacturing of jumbo parts. I think it’s a great idea.  

We are looking at the same sort of idea. To make a very large HIP, we would make it as a composite of segmented pieces that fit together. We call it the Lego HIP. That’s an approach, and we’re still working on that.  

Oscar Martinez: To add to something Cliff mentioned about going in between. We’ve talked about ATLAS, and I think Victor mentioned it too. 

From a commercial standpoint, I think it would be beneficial for us to venture into a kind of in-between size that does give us capabilities and proves out what we have to do. That would be probably a step in the right direction of where we need to be, because it will cover a lot of the components that we are not able to see. 

The oil and gas industry also has some components, and even on the IGT and aerospace side, if we go in between on some of those things, they will then design based on that size. If we’re looking at just commercially what HIP unit makes most sense for us to run, toll HIP services is always going to be between the 30 to 45-inch zone because it is able to fill in quickly. 

But again, that’s the biggest challenge. If we to go to an in-between larger component, what else could we bring in there that we could run all the time and make commercially viable for whoever jumps in — whether it be Bodycote, anybody else, or a collaboration — that it actually makes sense to be used.  

Cliff Orcutt: From an economic standpoint, if you’re only building one 4 meter HIP and you have to decide whether it goes to the East Coast or West Coast — that’s a tough decision. But if you build a couple 2 meter HIPs, you could afford to put one on the West Coast and one on the East Coast, and you solve not only the submarine building on the East Coast, but you might solve some of the SMR building on the West Coast.  

Doug Glenn: Or you put a 4 meter HIP in St. Louis and that takes care of it all.  

Cliff Orcutt: If you can get it there.  

Doug Glenn: Yes, if you can get it there, correct.    

Powder to Part (37:05)

Doug Glenn: Let’s talk about powder to part. What is it, what current processes might it replace, and what are the obstacles to using it?

Soumya Nag: At Oakridge, we are testing whether you can actually make custom powders, scale up that powder production, and then utilize PM and AM, or different type of modalities, to make large-scale parts or customized parts. With powder to part, you have a powder and you have a certain chemistry specification for that powder. Can we actually find out whether we are going to have a PM HIP as a plausible way to make the part out of it? Make a mold, fill it up, and predict how the part will behave in the post-HIP, the machine changes, etc., and then inspect the properties.  

One more caveat: When we talk about powder, where is the powder coming from?  

We have to look at the feed stock that has been used to make the powder and ask: What is the chemistry of the powder? What is the shape of the powder? What’s the flowability of the powder? The physical and chemical properties of the powder itself?

Doug Glenn: Dave, what appears to be the most promising avenue to bring this about? 

David Gandy: Well, I think one of the things that you’ve really got to consider for powders is powder cleanliness. 

We’ve worked quite a number of years on trying to reduce things like oxygen in the powder so that as you consolidate that component, you don’t end up with oxides that are trapped at the grain boundaries or prior particle boundaries. It’s very important that we get powder manufacturers to work with us to bring the technology forward. 

Understanding the molecular chain of powder: reducing oxides
“Reduce things like oxygen in the powder so that as you consolidate that component, you don’t end up with oxides that are trapped at the grain boundaries or prior particle boundaries.”

In addition to that, if we start making very large parts in a 4-meter HIP unit, we’re going to have to really scale up our powder production capabilities in the U.S., and quite frankly, that’s not happened at this point.

Doug Glenn: They’re not going to want to upgrade their powder manufacturing if there’s not a market for it.  

Victor Samarov: Yes, exactly. One really large part may need a hundred thousand pounds of powder in it. We have already completed these calculations. I completely agree with David.  

One more piece I want to add: From powder to part, all the processes, except HIPing and maybe ceramic, are based on melting the material and then giving it some shape. Cast and rot investment casting, even additive manufacturing, is based on melting every particle. However, when powder metallurgy started in the ‘80s in the U.S. aerospace industry, the basic advantage it was looking at was the quality of the powder particles themselves. As you know, as heat treaters, the maximum cooling rates in cooling the billet are some hundreds of degrees per minute. But the powder particle crystallizes, and it crystallizes at the rate of 10,000 degrees per second because of its very tiny size. So, it can freeze almost any type of unbalanced metastable microstructure in it. 

HIPing is a solid-state bonding process. Nothing is melting in HIP. This means that during this process, we can retain this unique microstructure of the powder particles and then create and transfer this to parts of any size. For steel alloys, it may not be so critical, but for nickel base and some other alloys it’s absolutely essential. 

The caveat here is that going from powder to part via HIPing, you can create very large parts with unique properties brought by the rapid solidified powder particle materials.    

Doug Glenn: Mike, anything you’d like to add on the powder to part?  

Mike Conaway: No, I don’t have anything to offer much there. 

We’re intrigued with the additive manufacturing. Our focus has been on the binder jet that’s based on sintering where I think it offers a lot more advantages than it does to the laser fusion approach. 

Oscar Martinez: From our end, we’ve been doing this for a while already in Sweden with the oil and gas industry being a major, almost an established, process. However, one thing that I did want to bring up is not only is there a challenge with the current powder suppliers in the U.S. — there is some movement in terms of bringing new suppliers —but whenever we’re discussing some of these components being so critical, where the powder is coming from is going to also be critical. As David mentioned, just as much as the HIP needs to be ramped up and that large unit needs to be built, just as quickly we need to do the same thing with the powder suppliers as well. If we need to keep it in-house, the U.S. is going to have to grow very quickly as well. 

Doug Glenn: Much of what was discussed at Oak Ridge recently by the DOD and DOE was about bringing home the supply chain, including powder production.   

Cliff Orcutt: The technology of making parts concerns how to model those parts and how to predict shrinkage. 

There’s people that understand it but making it more accessible to companies is key to expanding the market for it. 

David Gandy: We are currently working with Oak Ridge National Labs and a few others to look at bringing modeling to your laptop, basically to allow you to do modeling for the HIP process, very similar to what maybe you do with forging technologies today, where you can have that capability to design as a conventional engineer.  What we’re trying to accomplish in working on this project is really looking at how we make modeling more mainstream for industry. As you make the modeling portion of this more mainstream, then the HIPing technology becomes more mainstream. The more people are exposed to it, the more people are engaged in it, the more companies want to work with it. I’d also like to thank Victor Samarov because Victor has certainly been a huge proponent of this and of trying to help move the technology forward.

Oak Ridge National Lab (48:07)

Doug Glenn: Soumya, I understand Oak Ridge National Laboratory has taken an active role in the PM HIP market. What exactly are you guys doing there what are you hoping to accomplish?  

Soumya Nag: We want to make components that are relevant towards nuclear in the DOE space as well as national security in the DOD space. That’s where the drivers are.  

The first thing I want to mention is that we don’t want to replace your traditional manufacturing, casting, or forging by any means. As Dave was mentioning, the need for production is going to ramp up so high within the U.S. that we will need alternative manufacturing pathways to really augment some of the troubles we have on supply chain side.  

PM HIP is one of the technologies that we have chosen. Under PM HIP, we have done three things. First, can we actually use an AM, what we call a directed energy deposition process or WAM, our AM process, where we are basically making these five mile long wells that are used as a shell for the outside surface. Can that withstand the temperatures, pressures, and times (i.e., a reactor or pressure vessel), can it actually withstand that cycle? So that was the big thing: Can the five mile long well actually withstand that temperature, pressure cycle, and then move or deform during the HIPing process without a failure? 

Secondly, if you look at a traditional HIP cycle, what does that temperature, pressure, and hold time do to the material? Can you break it up into ramp up time, ramp up pressure, ramp up temperature, and then hold time, etc., and see microstructural changes, property changes, performance changes as a function of each of these segments that we use or take for granted for the HIP cycle. Those are more science-driven questions that we need to answer.  Thirdly, where some of the challenges that we have encountered [with scalability]. When we did a PM HIP workshop here at Oak Ridge last year in October, we had about a couple of hundred people show up from academia, national labs, DOD and DOE, customers, stakeholders, etc. The question was, what is the scalability of a part when you go from a small to large part or small to a more complex part in terms of powder compaction, size and scale of the powders, property variations, and chemistry? That is another PM HIP question that we are trying to solve.

At the end of the day, the goal is to make sure that the industry can adopt this more freely and employ it for large scale production. Then, also giving them the option of using additive cans — a more customized shell. The good thing about AM and PM combination, if you choose that, is that you can use AM can as a “shell,” which you can remove afterwards or keep. When you keep it, you are basically looking at a HIP-clad type of option where you can use similar or dissimilar materials and depending on the functionality of the surface versus the core, you can utilize that combination of two materials with two different manufacturing modalities. 

I think the workshop that we had in October last year was exceptionally well received from our end. It was driven for the voice of the customers — what does the customer want from us? What are the gaps and challenges around PM HIP that would really remove some of the angst that they have.  

That was the first thing that we did, but we also had people from the powder side, from the modeling side. 

Victor was leading the attendees, Dave Gandy was there giving plenty of talks about the need for PM HIP. Cliff was there talking about the utilization of HIP as a technology. We had industries from every bit of the segment come in and they wanted to help. 

The thought was, can we actually take personal spaces out and then talk and have a cross interaction across industries to try to solve a problem on national level. Like Victor and Dave said, we need our government to instill the idea that this is an important technology for the country. Can we move towards this? We were facilitating that and saying what the voice of the customer is. This is what everybody wants. The demand is absolutely there. Can we actually build on it?  

At the next workshop that we plan, we want to actually talk about real parts. We will be bringing in real parts to see how we can make it PM HIP. What are the success factors around it? I think that would be more end-product driven rather than the science part of the discussion.    

Doug Glenn: Yes, more practical and specific and less theoretical, if you will, but not that it was all theory. 

Soumya Nag: We have an active PM HIP steering committee with about twenty people from industry. Dave, Victor, and Cliff are a part of it. They have been tremendous in terms of providing us with guidance and seamless thoughts in terms of how we should move as an industry. 

Doug Glenn: Is that next workshop scheduled? 

Soumya Nag: Not yet, but that is in the planning process right now. 

Doug Glenn: We’ll certainly help publish that when the time comes, so keep us posted.  

Soumya Nag: We have a report from the first workshop that is in limbo right now, but we will publish it relatively soon.  

It discusses what we learned from the workshop, the gaps and challenges, and how we should move forward. We have about a 60 to 65-page report that we compiled from that workshop. These are the demand signals for everybody that we compiled together.  

Doug Glenn: Let us know if we can help you publish that as well and help you get it out to the right people.  

Toll Manufacturing vs. Ownership of Equipment (55:47)

Doug Glenn: Cliff, let’s discuss the differences between toll processing and ownership of equipment. When it comes to HIPing, does it make sense for manufacturing companies to send their HIPing out to toll manufacturers or is it better to buy your own equipment?  

Cliff Orcutt: That’s an economical question that you have to calculate and look at. Number one, if you only have one part, you’re not going to buy a HIP unit. 

Evaluating the cost of toll processing versus purchasing your own HIPing equipment. Basic rule of thumb: use toll HIPing until you cannot afford it, then go in-house.

But if you have the quantity and the quality, and the cost works to the favor of owning your own HIP unit, then you should purchase it. However, if you also don’t have the floor space, location, people, or infrastructure to support it, then sometimes it’s easier to toll HIP. If you’re in the middle of nowhere and your parts are lead, and you can’t afford to ship them, then you might want to have your own HIP unit located in your facility. It’s important to analyze these aspects to decide if there’s ROI and if it’s the best way to economically make your parts.

Doug Glenn: Mike, what are your thoughts on toll processing versus owning your own? 

Mike Conaway: I think you toll process until you can’t stand the cost anymore, and then you bring it in house.  

You plan the investment for it. There may be tipping points, I don’t know how to quantify those. But I think that Cliff’s remarks are well taken. It’s a little bit complicated and you have to have a believer; let’s say you’re a user of HIP equipment and you’re getting it done by toll. Sometimes you don’t want to have it; you don’t have anybody in-house that has insight into HIPing and therefore is not a champion for it. I recommend toll HIPing until you can’t afford it, and then we go in-house.  

Used Equipment Market for HIP (58:26) 

Doug Glenn: Let’s discuss the International HIP Conference. 

Cliff Orcutt: The 2028 conference is going to be held in South Korea in the town of Busan, very beautiful. And it’ll be a great conference, so we’re hoping to have over 200 people at it. 

It will cover all aspects of HIPing, not just powder metallurgy, but it’s all the latest technology from the makers, the toll people. Everybody that’s in the HIP industry is usually there from all countries. Hopefully by 2028 we can have the Eastern Block Country there attending again as well. 

Doug Glenn: If I remember correctly, it was in Columbus in 2022. 

Cliff Orcutt: Yes, 2022 in Columbus, 2025 in Germany. It moves from USA to Europe to Asia every three years.  

Doug Glenn: The committee is a group of people who have a common interest in putting this together. 

Mike Conaway: Yes, it’s group of enthusiasts.  

Doug Glenn: The most recent one was this year in Aachen, Germany, right?  

Mike Conaway: Yes.  

Doug Glenn: How many people attended that one?  

Victor Samarov: Around 250.  

Doug Glenn: HIP 2025 is currently on the website, and then when you’re ready, you’re going to have a HIP 2028. 

Cliff Orcutt: It’s reserved, and it’ll be coming online probably next year. 

The paper from 2025 has been released and made available to people.  

Doug Glenn: Anybody else have any other comment on the HIP event?  

Soumya Nag: It was my first time going there.  

I felt that it was a great exposure to what the world is doing on the PM HIP side. Sometimes we are bottled down in what we are doing in the U.S., and we think we are doing the best thing in the world. That’s not true. There are countries who are superseding us and they have ideas and thoughts and future goals which are very possible for them to succeed. We want to make sure that we learn from them and really act upon that.  

Cliff Orcutt: One thing we might want to mention is the Metal Powder Industry Federation, MPIF, for about 15 years has been promoting it as a green technology. I think that we all could agree that we should lean green, towards green things.

There’s less energy usage, less machining. It’s a near net shape technology, and so even if it does economically cost more, we still should look at it from that green aspect, I believe.  

Doug Glenn: And you’re talking just about HIPing in general or PM HIP?

Cliff Orcutt: Mainly PM, but all forms of would be more of a green technology compared to your big carbon melting type technologies. 

Doug Glenn: Good point, Cliff, thank you.

All right, gentlemen, thanks very much. I appreciate your time, your expertise, and it’s been a pleasure talking with you all.


About the Guests

Mike Conaway
Managing Director
Isostatic Forging International

   

Mike Conaway is the managing director at Isostatic Forging International. He began in the HIP field at 19 years old, where the process was invented and developed (Battelle Institute in Columbus, Ohio). Many consider Mike a pioneer in the business of HIP equipment: analysis design, construction and operations. He has ten issued patents related to high pressure design, and received the Lifetime Achievement Award by the International HIP Committee. 

For more information: Contact Mike at conaway@hot-isostatic.com or visit his LinkedIn.

David Gandy
Principal Technical Executive, Nuclear Materials
EPRI

David Gandy is the principal technical executive in the Nuclear Materials sector for EPRI. He has 40+ years of experience in materials, welding, and advanced manufacturing. He is an ASM International Fellow and currently also is a member of ASME Section III. 

For more information: Contact David at davgandy@epri.com or visit his LinkedIn.

Oscar Martinez
Regional Sales Manager
HIP North America, Bodycote

Oscar Martinez is the regional sales manager of HIP North America, Bodycote. He is a metallurgical and materials engineer with a degree from the University of Texas at El Paso. In 2022, he took his current position for the Hot Isostatic Pressure and Powdermet® divisions at Bodycote IMT, serving the North American market.

For more information: Contact Oscar at Oscar.Martinez@bodycote.com or visit his LinkedIn.

Soumya Nag
Group Leader of Materials Science and Technology
Oak Ridge National Library

Soumya Nag is in the group leader of the Materials Science and Technology Division at Oak Ridge National Laboratory. His research interest is understanding processing (additive and conventional) — structure (phase transformation across different length and time scales) — property (mechanical and environmental property) relationships in light weight and high temperature structural alloys. 

For more information: Contact Soumya at nags@ornl.gov or visit his LinkedIn.

Cliff Orcutt
Vice President
American Isostatic Presses, Inc.

Cliff Orcutt is vice president of American Isostatic Presses, Inc. and has been involved in more than 200 HIP installations in 25 countries over a 48 year span. Orcutt is Chaiman of the International HIP Committee , helping to organize the HIP22 and HIP25 conferences to spread HIP knowledge. 

For more information: Contact Cliff at corcutt@aiphip.com or visit his LinkedIn.

Victor Samarov
Vice President of Engineering
Synertech PM

Victor Samarov is the vice president of Engineering for Synertech PM. He has a masters degree in mechanical engineering from MPTU in Russia and a Ph.D. and full doctor’s degree from VILS Russia. He has spent over 45 years in PM HIP, and has over 250 publications and over 50 issues patents. With more than 45 years of experience in powder metallurgy and hot isostatic pressing (PM HIP), he has authored over 250 publications and is the holder of more than 50 patents. 

For more information: Contact Victor at Victor@synertechpm.com or visit his LinkedIn.



Heat Treat Radio #126:  HIP Finds New Life in Modern Manufacturing Read More »

Heat Treat Radio #125: On-Site Hydrogen Generation — A Reliable Path for Heat Treaters

Hydrogen is essential for many heat treating processes, but what happens when your supply runs out?

In today’s episode of Heat Treat Radio, Devon Landry of Nel Hydrogen joins Heat Treat Radio Host Doug Glenn to discuss the potential risks of delivered gas and how on-site generation can secure reliable, high-purity hydrogen. This episode highlights the advantages of on-site generation and what questions to ask before making the switch. 

Below, you can watch the video, listen to the podcast by clicking on the audio play button, or read an edited transcript.




The following transcript has been edited for your reading enjoyment.

Hydrogen Usage in Thermal Processing (4:05) 

Doug Glenn: All right, let’s talk hydrogen. I think the first thing I’d like to do is talk about the basics, how hydrogen is used and what it’s used for in thermal processing. 

Can you give us a 30,000-foot view on hydrogen and why are we using it in thermal processes? 

Devon Landry: Hydrogen is widely used in heat treat and processing. It’s a powerful reducing agent for surface cleaning and sintering success.  

Hydrogen scavenges oxygen, counteracting minor furnace leaks.
Photo Credit: Nel Hydrogen

It has the highest heat conductivity of any gas, so we can enter and exit parts quicker. It has lower density relative to air and nitrogen, which makes it really straightforward to manage. It burns off easily, readily, cleanly. The only true byproduct of that would be water.  

Doug Glenn: We are talking about the security of hydrogen supply.  

How important is it for people who need hydrogen to have it, and what happens if they don’t have it — what are the risks here? 

Devon Landry: My predecessor, Dave Wolff, used to say it’s like yeast for a pizzeria. It’s a very small part of the cost, but if you don’t have yeast, you don’t have pizza. If you don’t have pizza, you don’t have business. So if you don’t have hydrogen, you can’t really run your processes. 

The same with running out of hydrogen. If you’re halfway through a batch and you run out of hydrogen, that whole batch is done. If that batch isn’t finished and you don’t have any hydrogen left, you don’t have business. You have to send employees home and stop your production. You can run into a lot of problems. 

Doug Glenn: If you’re processing high-value parts, it’s not just a matter of simply running out of parts and not being able to finish the load. That load could be worth a quarter of a million dollars.  

Devon Landry: That’s correct, the parts are completely done; you won’t be able to use those parts — it’s a completely wasted batch. So, you would lose money, not just from excess production, but that batch as well. 

On-Site Hydrogen Generation vs. Supplied (06:25) 

Doug Glenn: There’s different ways of getting your hydrogen, it can be supplied or Nel, the company you’re with, supplies the equipment to manufacture hydrogen on-site. What type of risks are companies exposing themselves to if they are not generating their own hydrogen? 

Devon Landry: Delivered hydrogen is really the only other way to get your hydrogen, and that’s through industrial gas suppliers. I see a shortfall in the future, especially with liquid hydrogen production. There are many hydrogen plants that are getting canceled or delayed. 

Supply chain and hydrogen requirements for Artemis rocket

You see, it costs a lot of money to make these plants, and if the financial advisors deem that the plant is not going to make money, they’re not going to do it.  

For the Artemis rocket, that takes a full day’s production of liquid hydrogen in the U.S. to fill up. And there are many projects out there that are requiring liquid hydrogen, which is why I see a shortfall coming.  

If you can’t get the hydrogen from your industrial gas supplier, where are you going to get it?  

That’s where Nel Hydrogen comes in. With generating on-site, you take control of your hydrogen supply.  

Doug Glenn: You mentioned that you foresee a lack of supply and that some of these hydrogen plants aren’t being approved. 

Why aren’t these plants being approved to be built? 

Devon Landry: They cost a lot of money to build and industrial gas companies have a long-term strategic focus, with capital discipline kind of upfront. If you’re going to build a plant and shareholders are not going to see any returns on it, then they’re not going to do it. 

So we’ve seen a lot of cancellations. They haven’t really have a good commitment to shareholder value, and they emphasize on strong fundamentals there.  

Doug Glenn: At one point in time, there was a lot of talk about hydrogen fuel cells. And everybody wanted to do hydrogen. I haven’t heard much about that recently. Do you think that might have something to do with the cooling off of the hydrogen market? 

Devon Landry: Yes, I think so. There was a hydrogen world out there, and people really wanted to build new plants, have fueling stations. There’s so much you can do with hydrogen. But policies around hydrogen are affected by different administrations. With the current administration, they’re taking some of those incentives away. So there’s not as much money being provided as an incentive.  

Doug Glenn: This is all the more reason to be very careful about your hydrogen supply. Not only your current hydrogen supply, but in the future. With politics and different administrations, sometimes hydrogen fuel cells is on, then it’s off. As a result, supplies may be a bit dicey. Therefore, it’s probably well worth people paying close attention to where they’re getting their hydrogen now and what the future looks like. 

Your input is really important here.  

Proton Exchange Membrane (10:23) 

Hydrogen cleans part surfaces to enhance processing results.
Photo Credit: Nel Hydrogen

Doug Glenn: Tell me about PEM; what does that stand for? 

Devon Landry: PEM stands for proton exchange membrane. It’s a differential pressure system, where hydrogen is allowed to pass through the membrane but oxygen cannot. 

We’re taking ultra pure water with a resistivity of greater than one mega ohm. That’s going through into the cell stack and the electrolysis takes place there. The hydrogen is allowed to pass through that membrane; the oxygen is not. So, the hydrogen goes towards the process. 

Doug Glenn: Oxygen and/or water is the only byproduct.  

Devon Landry: Yes, and it returns to the main reservoir, and that oxygen gets vented, either out of vent stack or into the room. 

Doug Glenn: The primary markets that Nel Hydrogen serves are mostly industrial, and Nel can also do much larger units. Can you tell me about that? 

Devon Landry: With alkaline and PEM both, we can do megawatt style units. I handle primarily the industrial units, and we can go all the way up to 100, 200, 300 megawatt systems — a very vast range. 

Doug Glenn: Most businesses in our industry would not need that much, but it’s good for our people to know that you guys have expertise, not just in the sizes that are good for them, but larger sizes as well. 

Nel Series hydrogen generators
Source: Nel Hydrogen

PEM Process vs. Alkaline (12:05) 

Doug Glenn: We have discussed the PEM process. Can you explain the difference between how the hydrogen is extracted from the PEM process vs. alkaline? 

Devon Landry: The alkaline system uses KOH, which is highly corrosive and dangerous to handle. You have to fill it up, so there’s a safety aspect with that. In addition, the purity that you’re getting out of the alkaline process is not quite as high as PEM. I think it’s 90%, but it can be 97 to 98%.   

With the PEM process, the only output you’re getting is hydrogen and some water, and we mitigate that water with a dryer inside the system. We get five nines purity plus: 99.999% purity plus. 

You really need that purity in a lot of the heat treating processes to give you the coloration of the pieces that you’re putting through. With the industrial gas suppliers, you often have to pay a premium to have higher purity. Many times, when you send those cylinders or a tube trailer back to get it refilled, they do not test it to find out exactly what the purity is unless you specifically request that. So your purity might differ every now and then, which means you’re not going to get the exact effect on your process that you would like.  

The way the industrial suppliers are making that hydrogen is through steam methane reforming. It’s very energy-intensive, and carbon is a major by-product of that process.  

Our machines are as carbon free as your electricity supply line: if you’re feeding it with solar and wind energy sources, utilizing renewable energy, then you are at a zero carbon footprint. 

Doug Glenn: You would have true green hydrogen. If your electricity supplier was green, then you would be really producing green hydrogen, which would be very good.   

Delivered Gas vs. Hydrogen Generation (14:55)  

Doug Glenn: What questions should companies be asking if they are considering moving away from bulk or delivered gas to on-site hydrogen generation?  

Devon Landry: To have a hydrogen generator on-site, you need to know your flow and your pressure. There are going to be operational and capital costs.  

The capital costs are a little larger with the hydrogen generator. So you’ll need to know how much gas you’re using and what pressure you’re using at. We have calculators to determine which unit would be best for you based on those questions. 

If the capital costs are a little too high, which they are for some companies, then we do have leasing options that will help with that capital cost. We can break it down monthly, even for a 10-year period of what you would be spending for your delivered gas versus a hydrogen generator on-site. 

Doug Glenn: So, you can do that analysis for businesses if they can provide their current expenditures for delivered hydrogen and usage, and then you can do a comparison to advise them on what it would cost if they were to transition to on-site generation? 

Devon Landry: Yes, exactly. Industrial gas suppliers can come with a lot of bills, so you have to pay attention. There could be a trailer rental fees, cylinder rental fees, delivery fees — a lot of bills combining into one. They also generally require signing a contract with them that could be seven plus years, and you have to provide quite a long notice to be relieved of those contract obligations as well. 

Doug Glenn: The capital cost could potentially be different, meaning probably more for an on-site generator for hydrogen. When you think of bulk gases, the operating costs are quite low for delivered gas.  

How about operational costs for hydrogen? 

Devon Landry: The cost of hydrogen generation is going to be the cost of your electricity. The price per kilowatt is going to tell you how much cost per standard cubic foot that you’re going to be paying for it. 

Doug Glenn: Electricity is really the only major cost operationally. How about maintenance costs? 

Devon Landry: The maintenance cost depends on which machine you select. We build maintenance costs right into the calculator that tells you how much the costs will be per year. There’s a quarterly maintenance cost, which is just basically a calibration, and then a yearly maintenance kit that you can put in yourself. 

Doug Glenn: Do you need to have any special personnel to run it or is it self-maintaining? 

Devon Landry: It pretty much takes care of itself. If there’s a problem with it, a pop up will let you know the problem, and you can go to the manual to learn exactly what the problem is. If you have a regular maintenance crew on site, many power plants have these, then you usually have somebody that can do it. 

It’s generally filter changes and updates like that. 

Community Perception on Hydrogen Generation (18:25)  

Doug Glenn: Pertaining to public perception, how has the community responded to hydrogen generation?  

Devon Landry: Most people like it better. We like to refer to it as the good neighbor benefit. Would you rather look outside and see a gigantic tank full of combustible gas or a quarter inch, stainless steel line?  

Fire marshals love it because we store less than seven standard cubic feet on our biggest machine, internally.  

And then when we hit the stop button, or if the generator shuts down, the hydrogen is all vented out into the atmosphere. There’s no stored hydrogen — only a minimal amount inside the machine. 

Doug Glenn: No rocket ships in your backyard. 

Devon Landry: Looking out the window, I’d rather see the sky and some bushes rather than a big tank. 

Is Hydrogen Generation Right for Your Company? (19:30) 

Doug Glenn:  Are there instances where generating hydrogen on-site doesn’t make sense for a company or when bulk delivery is a better deal? 

Devon Landry: This is why we have those calculators. I don’t need a company buying a generator if it’s not going to save them money or if it’s not going to be easier for you. It’s really only practical when you’re under 10,000 standard cubic feet per hour. 

Doug Glenn: Is that amount for a very large industrial manufacturing plant? 

Devon Landry: Yes, that’s quite a bit. 

Doug Glenn: Is there any amount that’s too small in which it wouldn’t make sense to have a generator? 

Devon Landry: No, our smaller generators put out about 10 standard cubic feet per hour, about 4.9 liters per minute, and it’s on-demand. If you need the smallest amount possible, they’ll put that out for you. If you don’t need any further for the interim, it will basically sit there in idle. These generators are fully on-demand and give you exactly what you need. 

Doug Glenn: Which companies currently are out there that it really makes sense for them to look at on-site hydrogen generation? 

Devon Landry: Really, anybody that needs hydrogen. If you’re not excited about your delivered hydrogen, if you’re having issues with it, if the cost is too high, we have a lot of different industries that we run with. Many are heat treating and metal processing business. There’s also chromatography, gas chromatography, MOCVD, many different industries. If you have delivered hydrogen, generating hydrogen on-site would be worth looking into. 

Final Thoughts (22:45) 

Doug Glenn: Where is the corporate headquarters or the world headquarters for Nel Hydrogen? 

Devon Landry: Nel Hydrogen is headquartered in Oslo, Norway. 

Doug Glenn: How long has company existed?  

Devon Landry: It started in 1927. 

Doug Glenn: Where’s the main headquarters in the U.S. or North America? 

Devon Landry: We’re in, Wallingford, Connecticut, and all of our PEM machines are built there. 

Doug Glenn: Very good. I’d like to thank all the everyone for listening.  

Hopefully you found this episode enjoyable and informative. Thanks again, Devon. Appreciate you being here. 


About the Guest

Devon Landry
Senior Field Engineer and Technical Lead
Nel Hydrogen

Devon Landry has been an integral part of Nel for 16 years, establishing himself as a leading expert in industrial on-site hydrogen generators. With over 15 years as a Senior Field Engineer and Technical Lead in Technical Service and Customer Support, he has played a key role in delivering top-tier service and expertise to Nel’s global customer base. His extensive experience includes traveling more than 3 million miles worldwide, working across diverse industries and customer sites. 

Beyond his technical proficiency, Devon brings strong leadership and business acumen. As an entrepreneur, he successfully founded and managed a craft brewery and taproom in Connecticut for six years, leading a team of seven employees. This experience further enhanced his ability to blend technical expertise with strategic management and operations. 

For more information: Contact Devon at dlandry@nelhydrogen.com 



Heat Treat Radio #125: On-Site Hydrogen Generation — A Reliable Path for Heat Treaters Read More »

Heat Treat Radio #124: Solving Aluminum Distortion Challenges with Uphill Quenching

What do Mars rovers, sniper pods, and rotor grips have in common? Uphill quenching — a thermal-mechanical technique that uses liquid nitrogen and high-velocity steam to dramatically reduce stress and distortion.

In today’s episode of Heat Treat Radio, Greg NewtonNewton Heat Treating CEO, joins host Doug Glenn to take a dive deep into this little-known but highly effective process for controlling residual stress in aluminum alloys. Guest John Avalos, Newton’s quality engineer and IT/Digital Transformation Manager, joins the conversation.

Get the full picture of how this thermal-mechanical method improves machinability, enhances precision, and extends component life, especially in aerospace and optical applications.

Below, you can watch the video, listen to the podcast by clicking on the audio play button, or read an edited transcript.




The following transcript has been edited for your reading enjoyment.

Introduction (2:20)

Before we even start talking about the process, let’s talk about your qualifications and experience. How did you get in heat treating and aluminum heat treating?

Greg Newton: In 1968, my father opened up a heat treating facility in the city of industry. From age 13 on, I had a summer job and weekend job. It’s part of my blood. In the early ‘70s, we were the first heat treater to purchase an X-ray diffraction machine, which is a non-destructive way of checking for residual stresses beneath the surface of aluminum alloy and different alloys; we concentrated on aluminum. It’s an old analog Rigaku machine; it’s still running. It gives me great data, so why change it out for a half-million-dollar new machine? That’s how we got started.

There was a pilot project with Northrop Grumman for controlling residual stresses, taking glycol out of the laboratory and putting it in production. Now, one thing I didn’t like about that project was that we gave all the data to Northrop and then they wrote a spec and gave it to the world. I didn’t feel we got our fair payback for it.

When the M1 tank optics came along and they knew we had X-ray diffraction on premises, they wanted to take something basically out of the laboratories. The patent names it “thermal mechanical uphill quenching,” which describes the process perfectly. We use it because of the residual stresses created during the quench cycle. When you go from roughly 1000°F down to room temperature rapidly, that’s what sets up your mechanical properties in aluminum.

What Is Uphill Quenching (5:02)

Doug Glenn: Let’s take a 30,000-foot view for someone who has no concept of what an aluminum alloy is. What is uphill quenching?

Greg Newton: It’s the inverse process of the quenching cycle in the solution heat treat cycle. You’re going roughly from 1000°F to room temperature, hot to cold. A part can’t cool instantly. What happens? The outside cools first. It shrinks, and you get a compressive shell. By the laws of thermodynamics, I have an equal and opposite action happening in the core of that part. So, it develops tensile stresses to hold up that compressive shell. They’re in equilibrium when I’m done with the part and I send it back to the machine shop.

Then, they’re going to remove material from one side; they’re going to gun drill it. That’s when challenges arise, because at the point of after-quench, we have the compressive shell and the tensile stresses in the core. They are in equilibrium. When I remove material away, that compressive shell moves, and that’s where aluminum becomes very difficult to machine.

Newton Heat Treating’s thermal processing equipment Source: Newton Heat Treating

Doug Glenn: Does uphill quenching solve this problem?

Greg Newton: It solves the problem, for all parts, all shapes, all sizes. Parts that don’t lend themselves to flip flopping, which never solves the problem. You might machine away some compressive shell, rejig the part, flip it over, remove a little of the compression on the other side, but you still have those tensiles. The tensiles are the bad guys. That’s what’s causing a failure in use and propagating cracks.

Doug Glenn: Tensile stresses are the ones pushing out, whereas the compressive strengths are the ones that are pulling in.

Greg Newton: And a compressor shell can actually be advantageous for certain types of fatigue, like creep.

Doug Glenn: Is uphill quenching predominantly done on aluminum or exclusively done on aluminum?

Greg Newton: It is predominantly done on aluminum. We’ve done a little bit on titanium. It had fair results with it. Alcoa developed uphill quenching in the late ‘50s. That’s how old this technology; it’s nothing new. Back then, though, engineers used to design things 2.5 times as robust as they needed to be, just because we didn’t know how much residual stresses were inherent in the manufacturing of these parts. But now, with trying to get aircraft, car, and all other types of components to be as light and as thin as possible, this process comes into play. It has finally come of age.

Neutralizing Stresses with Uphill Quenching (7:50)

Doug Glenn: So you have the compressive and tensile stresses, and uphill quenching basically is helping to neutralize or to balance those so that when you go to machining and you’re doing some machining, you’re not going to get what you would anticipate with a distortion or something of that sort.

Greg Newton: Well, again, we go back to the original patent name that describes the process perfectly. Thermal, mechanical, uphill grade. We’re not stretching it with a hydraulic press to 1.5–3% to dislocate the lattices. We’re using a thermal gradient. That’s our energy. That’s our machine.

It’s a little hard to wrap your head around. We’re going to compress and get the dislocation that way. Well, what put those stresses in was that thermal gradient of the quench roughly going from 1000°F to room temperature. How can we reverse that? Aluminum, unlike steels, is almost annealed soft in an as-quenched (AQ) condition.

So that is the optimum time, as the original patent tells you. There are so many misconceptions out there. When you do it in a hardened condition, you’ve lined up everything against yourself. You’ve increased yield strength. You want to do it when the material is as soft as possible. For aluminum, you want to either do it immediately after quench, within an hour, or retard the natural aging by putting it in a sub-zero freezer.

Doug Glenn: The uphill quenching is neutralizing those stresses, so there could be further processing without as much “fear.”

Greg Newton: That’s correct. We’re going to go from -320°F and heat it up with a high-velocity steam blast, back up past room temperature.

Doug Glenn: We’ll get to the actual process, I just wanted to make sure we’re understanding why we’re doing it.

Greg Newton: The machinability of aluminum are close-tolerance parts: They diamond hone our laser optics to a millionth of an inch in aluminum.

Doug Glenn: Wow.

John Avalos: That’s a tight tolerance.

Doug Glenn: Yeah, that’s a tight tolerance. So basically, uphill quenching is just the inverse of the quench.

Greg Newton: That’s all it is.

Doug Glenn: Coming downhill on the quench, then we’re going back uphill. Is this similar to a temper process for a ferrous material?

Greg Newton: We’re not changing any of the mechanical properties. All we’re doing is a realignment of the lattice parameter of the inner crystalline structure.

Doug Glenn: That sounds so different.

Greg Newton: If you picture that compression pushing in and the tensiles pulling out, we’re relaxing them back to a neutral state.

Want to read more about the Newton Heat Treating’s story? Click the image for a full article.

John Avalos: But the main point is that it doesn’t change the temper at all.

Greg Newton: It does not change any of the mechanical properties.

Doug Glenn: Is uphill quenching predominantly or exclusively used in aerospace or are there other markets where you use it as well?

Greg Newton: There are other markets — any close-tolerance parts in aluminum and the alloys. It’s extremely effective on all alloys; 6061 is used in the laser industries or laser optics. We do a lot with the optical industry.

Doug Glenn: So it’s not just aerospace, but a good chunk of it is.

Greg Newton: Nothing on Mars hasn’t come through our hands. I mean, all the gating and sending antennas, all the optical housings, the wheels even were cold stabilized, because they’re trying to make them so light. They’d gun drill them and they would collapse.

Doug Glenn: Did you say “nothing on Mars”?

Greg Newton: All the parts for the Mars rovers have come through our facility.

Actually, our first parts were on Voyager. We’d been looking at this process, and JPL (NASA Jet Propulsion Laboratory) came to us requesting us to try uphill quenching the parts. Dr. Martin Lo from JPL hand-carried these parts over that are still sending data on Voyager that is outside the influence of our sun. Isn’t that incredible?

Doug Glenn: That is incredible. I think it’s just so fascinating what this industry does that people don’t know about.

Getting Technical: The Uphill Quenching Process (12:37)

Doug Glenn: Let’s jump into it and talk technical. What is involved in the uphill quenching process?

Greg Newton: You take these heat treated parts and either perform the uphill quench within an hour or retard the natural agent, that’s key. There are companies that try to uphill quench in a hardened state, and you will get some reduction in stresses, probably more than you will get from any straight thermal stress relief where you’re just lowering the yield strength and popping some of the lattices, but this is nowhere near what you’ll get in an AQ condition.

Doug Glenn: Timeliness is important here. That’s probably the first point.

Greg Newton: Very, very important. So some of the equipment you’ll need includes a large door, depending on how big the part is. And you know, we have a 3,000-gallon tank here on premises and we are ready to put a 6,000-gallon one in. Then, all you’re utilizing the LN2 for is its coldness. It’s not like other steel heat treaters and stuff where it’s in the atmosphere. We’re just using it for…

Doug Glenn: Let me interrupt you, Greg. You said an acronym. What is LN2?

Greg Newton: Liquid nitrogen.

Doug Glenn: I assumed, but just want to make sure.

Greg Newton: The boiling point at sea level is -320°F.

Doug Glenn: So you’re taking it down.

Greg Newton: Right. You also need some sort of steam boiler or steam generator; we have both on premises. You may need an accumulator depending on the size of the parts you’re doing, because you’re using the steam, trying to reverse the delta T of the quench as fast as possible.

John Avalos: It’s a rapid process.

Doug Glenn: That’s why steam is very effective at rapidly heating.

Greg Newton: As the original report tells you, the difference is that you’ll get over 80% reduction in stresses utilizing LN2 and steam versus boiling water. The maximum’s around 19%. We’ve done our own testing and have gotten about 20% — so, significantly higher. Doing it in an AQ condition is key. The original report tells you that you get nothing out of doing the process in a hardened condition, which is done by many of my competitors.

We’ll do it any way the client wants it. While we have boiling water capabilities, but I try to talk the client into doing it the preferred way, which is in an AQ condition with LN2 to steam. That’s how you get to your biggest temperature differential, your delta T. You’re trying to match the delta T of the quench of the heat treat quench in reverse. That’s all you’re trying to do.

Doug Glenn: It sounds simple. So far, we have covered needing aluminum as-quenched, as soon as possible. You’re dipping it into LN2 to take it down to -320°F, roughly. Right?

Greg Newton: Depending on the thickness of part, it’s not a soaking cycle like solution heat treating would be, but you do want to make sure that part is completely at that temperature.

Doug Glenn: So you’re taking it down to -320°F, then immediately taking it out, and you’re hitting it with steam for how long, and what’s the criteria?

Greg Newton: It depends on the size, the shape, and the configuration. We have many, many steam fixtures out here that can be slightly modified. If you have a good production run, it’s best to design a fixture specific to that part. Bell Helicopter does this for the rotor grips for the Hueys when they were re-engineered.

Doug Glenn: Are you taking it up then to a specific temperature?

Greg Newton: Yes, we want be above 160°F for casting; 180°F, we prefer, for raw product.

Doug Glenn: Okay, and once it’s back up to that temperature, is the process done?

Greg Newton: You are done. Now there are many specs that repeat the process. I think this is mostly to make up for lack of fixturing, a part-specific fixture, so you can make up with subsequent processing. It does come out of the history of the past of when they really didn’t understand, before the original patent. There used to be tricyclic stress relieving where they would take it from dry ice into boiling water.

One of the advantages of steam, and the reason why you get much better results with steam versus boiling water, is the fact that it’s a higher temperature. It blasts away any ice that’s forming on that part, on the surface of it and it’s a turbulent flow over that part. So it readily transmits that energy quicker.

John Avalos: Can you also talk about the X-ray diffraction and how you use that to measure how effective the process is?

Greg Newton: When we took over this project and we wanted to prove it out, we learned a lot of things. When an engineer patents something, he usually controls everything. And it’s not that they’re wrong, it’s that they are .000001% right. In the real world, it makes no difference. So, you tend to throw those things away because they have no real relevance here on earth or in space.

So, we stumbled upon some other things that were advantageous to buy X-ray diffraction.

The standard operation involved first, getting the part, heat treating it, and then directly after quench, and take a reading because we know after a solution heat treated, we have that perfect setup between the compressive shell and the tensiles and the core. They’re going to be equal. Or close to it.

The thicker the section of the part, the more stresses, because it takes longer to cool. When you get into parts with two-inch cross sections and quarter-inch webbing, that’s when you get a lot of oil canning and all hell breaks loose. We can solve that.

I remember there was a bot part we had for the 767 or 757. It was the pilot’s window, and they were failing in service. The bot had a whole shift Boeing was paying to re-machine all out-of-tolerance parts on the shelf, until they finally they were over-machined and had to be thrown away. We had a hard time. I did parts for nothing to prove it to them, and they adopted it. But then the union fought them, and now that division is closed.

You have to evolve or else you will go the way of the dinosaurs.

Doug Glenn: You can’t fight with science. Ultimately you can’t fight with the truth of metallurgy.

I think we have the basic process down; it doesn’t sound that complicated. It’s a reverse of the quench process, essentially.

“Aluminum alloy 6061 is a forgiving alloy…It lends itself to uphill quenching because of its lower yield than the 7,000 series. We also do work in the 7,000 series.”
Source: Theworldmaterial.com

Greg Newton: Attention must be paid to the details, though.

Doug Glenn: Yes, exactly. I have talked with a couple of other people about this process, and I’ve been told that the aluminum alloy is somewhat important in the process depending on what alloy you have. Is that the case?

Greg Newton: Aluminum alloy 6061 is a forgiving alloy, and most of the optics we do are some form of that. It’s a forgiving alloy in many, many ways. It lends itself to uphill quenching because of its lower yield than the 7000 series. We also do work in the 7000 series. It takes a little better steam fixture, perhaps a little more attention to detail. Rough machining comes into play, regarding how much rough machining is done prior to the final solution heat treat and the uphill quench.

John Avalos: There are lots of factors.

Greg Newton: We like to be involved in the beginning, not as an after fact. The best successes we’ve had is when the company knows it’s going to be a problem part, so they get us involved in the beginning. Then, we set it up right and everything goes smoothly, instead of after.

Doug Glenn: You had mentioned the X-ray diffraction and the testing of it. Is there anything more we want to say on that?

Greg Newton: After the solution heat treat, I’m going to get that perfect ratio of my compressive shell and the tensiles. After the uphill quench, we’ll measure again, and then once after aging, because aging can have a slight effect on your stress levels.

That will give us an internal baseline, and we do it for all clients on all first articles. I encourage clients to pay for it, but to a lot of machinists, it’s just an extra cost. But should they ever have a problem in the future? The proof has always been in the pudding. I send it back to them because I can’t tell you how many skeptics we’ve had that call me back and say, “dang, it really worked.” And then they think it’s that magic. Some of the failures that have come from the successes and thinking, “Now I can make up the lost time. I’m going to make twice the cuts, twice as deep, twice as fast.” Then you induce stresses by machining parts.

Newton Heat Treating’s equipment for cold stabilization
Source: Newton Heat Treating

Doug Glenn: You mentioned that when the engineer initially does the patent, they control everything; they put a lot of standards in there. It sounds to me that in your practical application of this process, you found out which one of those instructions are important, and which ones are maybe not as important.

Greg Newton: We have completely refined the process.

Doug Glenn: Now you know you don’t need to waste time on item X because it really doesn’t matter so much. The correlation for success may be more tied with another item.

Greg Newton: The boiling water aspect becomes so appealing to my competition because you don’t need to use your brain to design steam fixtures and other processes. We have designed many steam fixtures over the years, and they’re semi generic. We can change the inserts for cylindrical parts. We have found it’s very advantageous to steam inside and out, simultaneously. When it says high-pressure steam, I have engineers up with their cameras and I say, “No, no, back away about 30 feet.”

Doug Glenn: Step back from the part. That sounds interesting. The design of the fixtures for the impingement of the steam sounds very similar to me to something we’ve talked to Joe Powell of Akron Steel about. He talks about that high-intensity quench, not uphill quenching, but downhill quenching in this case, where it’s really super critical that you quickly and uniformly cool the entire outer shell at the same time.

It sounds like these fixtures you’re talking about are somewhat along that same line that they need to be hitting the part at the right place, right time, right volume.

John Avalos: They represent the configuration of the part as close as we can anyways, so that we get a nice even steam blast.

Greg Newton: We’ll tend to concentrate steam in thicker areas, back off on thinner areas.

Challenges in Uphill Quenching (25:00)

Doug Glenn: What are the biggest challenges that you face when performing uphill quenching?

Greg Newton: Overcoming the misconceptions of when and how to do it can be challenging as there are so much different variables. We have capacity for boiling water and steam, but we prefer to do the best method possible, and give my clients the best, because the price is the same. I’d rather have a happy client. Then, I think, boiling water sometimes gives it a bad name when it doesn’t work. They often throw out the entire system, the baby with the bath water.

Cyclic thermal shock process
Source: Newton Heat Treating

Doug Glenn: In the actual process itself, fixturing can be an issue, placement and configuration of the steam is an issue. I’m guessing part configuration can be challenging, the thick to thin cross-section. What are some of the difficult aspects of uphill quenching or difficult parts.

Greg Newton: One day, Lockheed calls me, and they had a sniper pod for the F16. They tread machined this 1,600-pound hand forging three times and were trying to go to a one piece, monolithic part. They had one more shot until they were going to lose the contract.

So, Don of Lockheed came to me asking if we could do it. They wanted to send me 1,600-pound hand forging and I said, “No, no, you need to rough machine this thing.” I asked how much the part weighed when they were done — “168 pounds.” That’s crazy!

I told them they needed to rough machine the part and then send to me. So, they rough machined it, and I get a part that is 1,200 pounds, but it was 6061. I told them we’ll give it our best shot. We did do multiple stabilizations on that part — I think we stabilized it three times, but it worked.

He was worried about getting this big hand forging back on the machine, because it did move a lot during uphill quenching. We did, in between post-heat treat, straighten it, uphill quench it, then straighten it; each run time it moved less, and, you know, you’re inducing stresses by straightening through the process as well. The third time, we uphill quenched it, checked if we needed to straighten it, and we didn’t. We shipped it, and they got through this. We saw another two or three more.

The challenge is what they think the process will do and what it’s capable of. I don’t think that would’ve worked for the 7000 series. You really want to get it within 150 thousandth to 100 thousands of control, because of the dispersoids they put in the super alloys, making it tougher to uphill clench.

Doug Glenn: What is your most interesting part that you have uphill quenched?

Greg Newton: The rotor grips for the old Hueys. When they re-engineered them and doubled the horsepower, they went from the two blades that you see on the mash that they could hear from 30 to 40 miles away. They increased the horsepower of the engines and went to four composite blades, but the rotor grip itself that they wrapped the carbon fibers around was a 2014 die forging.

But they had machining problems. They would make one pass over it and it would curl up about three quarters of an inch. So, Gene Williams came down from Bell Helicopter and spent a week with me. Bell doesn’t like anybody else’s data; they want to create their own data. So, he was out there with his camera, measuring and doing everything for a week. We got through the machining and they’re dead flat. Now, when I get rid of the stresses, I get rid of all the stresses: the compressive shell and the tensiles. So, they went back to these rotor grips and peened them, glass beaded them. This gave it a nice, even compressed shell without the negative effect of the tensiles in the core.

Now they are getting 8 to 10 times the life expectancy out of these parts, which makes sense on a fatigue curve, because you don’t know where you’re starting on that fatigue curve. Most of the curves go “whoop” [Editor’s Note: Greg demonstrates the exponential swoop of the graphic arc.], and you know you’re in that quarter and then you’re done. They store parts at 50% of their intended life for when they can’t get new parts and pray they get the new ones.

We get the problem parts, and that usually gets my foot in the door.

Doug Glenn: You mentioned earlier that if a company is developing a part or if they’re having an issue, it’s better for the client and for you guys that the sooner they talk to you the better. Most people don’t think the commercial heat treater or the processor can be that helpful, but with guys like you who have an expertise in the area, it’s probably well worth having an early phone call.

Greg Newton: No heat treater really loves to see final finished parts. It’s a violent process. We would rather have a little beat on that.

Ideal Parts and Benefits (30:45)

Doug Glenn: What type of parts should uphill quenching be performed? Can you give us a quick overview of the types of parts that you’ve uphill quenched?

Greg Newton: Any close-tolerance parts or any parts that are moving and machining out of tolerance are good for uphill quenching.

Doug Glenn: What benefit does uphill quenching have over similar or competitive processes?

Greg Newton: With straight thermal stress relieving, in which you’re just raising the temperature of the part, you have to be careful of losing your temper when doing it. To get a real stress relieve, you need to go up 600-700 degrees, and in doing that, you’re going to blow your temperatures right out in aluminum. So, you tend to use 25 degrees below zero for longer periods of time, and you might lower it. That tends to break the most highly strained lattices because you’ve lowered that yield strength a little bit and they’ll pop. That might be enough to get you through that part, the machining.

Is it going to move later in service? Probably. When heating up and cooling it down, especially in space; when you have an unstable part in space and it turns towards the sun gets 200-300 degrees (turns away from space in the vacuum), now you’re thermo cycling. It is a different type of stress relieving, and it can move those mirrors. Any slight movement in those mirrors, and you’ve lost your integrity.

They can figure out mathematically the coefficient of thermal expansion out in space, but warpage is difficult.

Radius of Industry (32:43)

Doug Glenn: You have an expertise in aluminum. What is the radius out of the city of industry that you’re getting clients from?

Greg Newton: We have received Israeli tank mirrors and German tank mirrors. We get parts shipped from the East Coast daily. Hamilton’s products, they attribute their position with the success of their uphill quenching on almost of all their cylindrical parts. They have a better product than anybody else, and they told me that they attribute much of that success the stability of their, their aluminum.

Doug Glenn: Is there anything that you thought of as we’re talking that you want to add into the conversation?

John Avalos: I’ll add that we’re the leaders in this process. There are a lot of similar processes Greg mentioned with boiling water. What that does is it forms the ice barrier around the part. By using steam blasting and uphill quenching, it removes that barrier — a barrier simply doesn’t form.

Greg Newton: Ice is a great insulator.

Doug Glenn: It reminds me of the vapor barrier when you’re trying to quench. It’s an insulator.

Greg Newton: Regarding the X-ray diffraction, having process control is important. You’re spending 10 times a normal heat treat, you’re throwing money in a problem, and there is nobody else that has any process control. To me, that’s playing Russian roulette with five in the chamber, not one. Your chances of success are slimmer. We want to know when something goes wrong. Why did it go wrong? Without any sort of can imagine, if we threw out EC and Rockwell out of our heat treatment and say, “Look, the charts look good! It must be good,” we’d have airplanes falling out of the sky daily.

Heat Treat Radio episode #124 with host Doug Glenn and guests Greg Newton and John Avalos

You have a very expensive problem. I would like to see a little more process control that everybody’s using. Nadcap is trying to tie that up as we speak.

Doug Glenn: Very good. Well, gentlemen, thank you very much I hope the listeners have enjoyed this as well. I think it’s a very interesting, somewhat unique process, and it’s good to talk with you two guys about it.

Greg Newton: I challenge any machine shop out there to send me their biggest nightmare in aluminum

Doug Glenn:  He just threw down the gauntlet: Send him your worst stuff, and he’ll see if he can fix it. Anyhow, thanks, Greg and John, thank you so much. I appreciate you guys.


About the Guest

Greg Newton
Owner, President, CEO
Newton Heat Treating

Greg Newton is the owner, president, and CEO of Newton Heat Treating. Founded by his father in 1968, Greg became president of Newton Heat Treating in 1995 and has decades of experience leading numerous projects in the heat treating industry. Greg has focused specifically on aluminum alloys — specializing in heat treating, uphill quenching, and other advanced thermal processes.

For more information: Contact Greg at gnewton@newtonheattreating.com



Heat Treat Radio #124: Solving Aluminum Distortion Challenges with Uphill Quenching Read More »

Heat Treat Radio #123: Helium Leak Detection Tips for Vacuum Furnace Operators

Helium leak detection is critical to ensure system integrity, product quality, and operational efficiency in vacuum processing. With 36 years of hands-on experience, Dave Deiwert of Tracer Gas Technologies joins host Doug Glenn on the most recent episode of Heat Treat Radio to share a wealth of knowledge on the evolution of leak detection technology, practical maintenance, and best practices for leak testing.

Listeners will gain practical insights into the best leak detection practices and how to troubleshoot challenges.

Below, you can watch the video, listen to the podcast by clicking on the audio play button, or read an edited transcript.




The following transcript has been edited for your reading enjoyment.

Introduction

Doug Glenn: Helium leak detection has come a long way, but not everyone has a brand new piece of equipment. So let’s talk about some of the shortcomings of older equipment and some of the improvements that you’re seeing. 

Dave Deiwert: When I started in 1989, leak detectors pretty much had what were called oil diffusion pumps as the high vacuum pump. That’s the pump that creates the vacuum for the analyzer cell or mass spectrometer so they can separate helium from other gases. These diffusion leak detectors did not like to be shut down improperly or have power outages quite frequently.  

You would hear stories of somebody that turned the power off of a leak detector without a proper shutdown or a power outage, and that could cause an oily mess from the diffusion pump, and maybe even crack the oil. So, you would end up having quite a maintenance event required on the leak detector before you could use it again.  

In fact, these kinds of problems happened so frequently that in my young sales days when turbopump leak detectors first were introduced, as I would go in to show it to a potential client, one of the first questions was, “What happens if you have a power outage?”  

I would have a little fun with that.  

I’d say, “Well, let’s find out.” And I would pull the plug out of the wall, and they would say, “Oh, you can do that?” And of course you could. A turbo pump would just coast down towards a stop. Then we turn the power back on, and it’s back up.  

Part of what compounded this problem with the diffusion pump is that it works by heating oil to jet mist oil vapor that goes to the top, and it’s condensed and directed back down. When power is lost, whether you turn the power off with an improper shutdown or a power outage, that pump is still hot for quite a while. It’s still trying to pump, and the backing pump, whether it’s a diffusion pump or a turbopump, is typically a rotary vane pump. With a power outage or power stop, those pumps will come to a stop very quickly. But those diffusion pumps and turbo pumps are not designed to exhaust atmosphere, so the backing pump or rotary pump comes to a stop pretty quickly, and now you have atmosphere potential on the exhaust of the diffusion pump. 

The turbopump survives that much more nicely than a diffusion pump does. So the first major upgrade in the technology across the board with all the manufacturers was moving away from diffusion pumps to turbo pumps. If you buy a new leak detector from the ‘90s to today, it will very likely have a turbo pump no matter whom you buy it from and even if you buy a used one. 

Size and Portability of Leak Detectors (00:06:09)  

Doug Glenn: How large were these original pieces of equipment? Did you have to wheel them around? 

Dave Deiwert: The very first ones I worked with predominantly would be the size of a washer/dryer. They would typically have casters on so you can roll them around.  

Turbopump Leak Detector
Source: LDS Vacuum Shopper

They took up more space and certainly took up a lot more energy. You could sometimes find what they would call portable leak detectors, but they would still have diffusion pumps in them, and they’d have less features because of how small they were versus the console leak detectors.  

Doug Glenn: So now nowadays they use helium leak detectors. 

Dave Deiwert: Most everybody’s gotten away from console leak detectors. You can find a couple companies that have a fairly large rolls-on-caster leak detector that still has turbo pumps, and higher performing backing/ruffing pumps. But the majority of leak detectors you’re going to find are more portable and smaller in size.  

Doug Glenn: Are they close in size to a briefcase? 

Dave Deiwert: They average 12 to 18 inches wide by 10 to 12 inches deep and 12 to 14 inches tall, approximately. So, much smaller than a washer/dryer. 

Quite frequently, these leak detectors may be sold with a cart so that you don’t have to carry them from point A to point B. It can be a little laborious to still carry them. They weigh 40 lbs or more. So quite often, the first accessory purchased with the leak detector is a cart to roll it around. 

Doug Glenn: So it’s a heavy piece of carry-on luggage essentially. 

Dave Deiwert: Absolutely. 

Maintenance: Old vs. New Leak Detectors (00:06:37)  

Evaluating a vacuum furnace for leaks

Doug Glenn: How would you compare the maintenance of those older units, assuming that you don’t lose power, versus maintenance of the newer units.  

Dave Deiwert: A stereotypical experience from my field service days would be if you’re running a diffusion pump leak detector in a production environment, using it every day, then most likely you’re going to do what I call an overhaul of the leak detector. During this overhaul, you’re going to change your oils, change the filaments in the mass spectrometer, put on new valve seats, and clean the manifold. 

Not everybody will do this. There are those that might go a year or two, especially if the leak detector is purely for troubleshooting, like if you have only a few furnaces. The leak detector may sit against the wall, and then you go get out to leak test a furnace. They may well get a couple of years of use out of a leak detector before needing to do any preventative maintenance or even a major overhaul.  

With the new turbopump leak detectors, I think all the manufacturers now have models that most likely you’ll go multiple years without really doing anything other than changing oil in the backing pump, which you might do a couple times a year or so, keep an eye on the oil level, much more maintenance friendly and easier to do the troubleshooting and the service to it.  

Filament Technology Improvements (00:08:10)  

Dave Deiwert: The next major upgrade in the leak detectors across the industry was the filament design.  

The old diffusion pump leak detectors predominantly had tungsten filaments, which, if you’ve ever cracked or seen a cracked light bulb that had a tungsten element in it, you know that immediately you lose the function of the light bulb. And the same thing with the filaments that are tungsten in a mass spectrometer. If it gets a pressure burst, which is what I call the event when somebody disconnects the test port from the vacuum furnace while the leak detector is still in test, that allows a pressure burst into the leak detector and tungsten filament, and most likely you will burn out the filament. As a result, you will have a maintenance event for that.  

As a rule of thumb, you will get 1,000 to 2,000 hours out of an old leak detector with tungsten filaments, but you’re going to get many thousands of hours out of a Yttria coated-iridium, which I think is used across the board in the industry today. In the case of  

several years even, it greatly reduces your cost of ownership with the newer leak detectors. 

Performance and Cost Comparison (00:09:12)  

Doug Glenn: Are there any other major differences between the old units and the new units? 

Dave Deiwert: There are some extra benefits from the upgrades that we’ve talked about. The turbopumps will allow, at least modern leak detectors, us to test at a higher pressure (or less vacuum). You press “Start Leak Detector.” The test port pressure pumps down to some vacuum level. For diffusion pump leak detectors, they had to get down to typically less than 50 mTorr. Depending on the model, definitely significantly lower vacuum than the turbopump leak detectors. So, the turbopump ones with the gross leak testing capabilities, you’re probably looking at 18 to 20 torr. I think a couple of manufacturers claim they can get in the test pretty much right below atmosphere and start looking for very massive leaks. 

The capabilities going to turbopump and Yttria-coated filaments has allowed manufacturers to greatly improve the performance and the robustness and reliability of the leak detectors. 

Doug Glenn: In terms of cost comparison, are newer units more or less expensive than older units?  

Weighing the costs and comparisons of different units

Dave Deiwert: When buying a leak detector in 1889 to early ‘90s, you’re probably looking at the low to mid-20s in price. You’re going to find they are a little higher than that now. With the market and inflation, you’re probably looking at upper 20s to low 30s for the most typical leak detectors that are purchased for the vacuum furnace industry. You can find some that are maybe two or three times that amount, but those are not needed for the industries that we’re talking about today. 

Troubleshooting and Service Efficiency (00:11:00)  

Dave Deiwert: If the client, their suppliers, or people who work on the leak detectors from time to time service a diffusion pump leak detector, they may want to explore an idea to troubleshoot a problem. They may not be sure what the problem is yet.  

First, you’re going to do a proper shutdown of the diffusion pump leak detector to protect the oil in the diffusion pump and the cleanliness of the leak detector. You may wait a good part of an hour for that diffusion pump to cool off before you can try the troubleshooting solution you’re going to investigate. Then you’re going to wait for another good hour for it to heat back up and be ready to confirm if what you have tried to do was successful.  

With a turbopump leak detector, you turn a switch off to turn the power off, and within minutes you can test out the solution on the leak detector. So you greatly expedite your troubleshooting time.  

What might have been almost always a full day event of troubleshooting and servicing a diffusion leak detector turns into less than a half day, possibly even an hour or two.  

In every category, the newer leak detectors are very attractive. If clients or our viewers reach out to their suppliers or potential suppliers, there will most likely be some trade-in value for your old leak detector, which will also help offset the pain and suffering of spending money on a new leak detector. 

Doug Glenn: Hopefully they’ll come pick it up, too. 

Where to Connect Leak Detectors on Furnaces (00:14:11)  

Doug Glenn: In your column, you talk about how there’s some debate amongst users on where to hook up the leak detector on the furnace. Can you walk us through that a bit? 

Dave Deiwert: I run into people who are very adamant that you hook up the leak detector in one of three places. And I’ve told salespeople that while we have our preferred location of where to hook to the leak detector, we should never visit a client and tell them they are doing it all wrong. As a field service engineer, I’ve confirmed that you can connect the leak detector at three most prominent locations, but the question is where is the most optimum place to connect it?  

Leak testing a vacuum furnace

The first place is hooking the leak detector directly up to the furnace chamber, because that’s where they imagine the leaks might be. The next two locations might look like close cousins because they’re both in the series flow away from the chamber, through the pumps and out to the exhaust.  

My preferred location is to connect it between the blower and the chamber. Or, if there’s 

a diffusion pump, I would connect it between the blower and the diffusion pump.  

The last place that you might see somebody connect it is between the blower and the backing pump or a roughing pump. They might do this to use the blower almost like a turbocharger to improve the signal to the leak detector. The disadvantage of doing that is most likely these vacuum pumps are very dirty single-stage roughing pumps. There are two concerns I have with this. One is the back stream of oil or hydrocarbons from that pump to the leak detector. And the second is the potential for back streaming, even of helium from the ballast port of the pump or the exhaust, depending on where the exhaust is terminated. If somebody exhausts the pump directly out of the building, then that’s not so much a concern. But if you connect it between the blower and the diffusion pump or the blower and the chamber, then you’re allowing the roots blower to be like an optically dense filter between the leak detector and that backing pump. 

And for the two concerns that I mentioned earlier about either back streaming of helium from the leak testing or back streaming hydrocarbons from the vacuum/roughing pump, the optimal location would be to hook it up between the blower and the chamber, or if it’s a diffusion pump, between the blower and the diffusion pump. If you’re hooking it up between the diffusion pump and the roughing pump, you need to make sure that you pump down to your base pressure before you open up the valve from the leak detector to that point. You don’t want to potentially suck any diffusion pump oil into the into the leak detector. 

Furnace Connection Points and Hardware (00:15:50) 

Doug Glenn: Is there a feed through meant for leak detection built into the furnace, between the blower and the diffusion pump or roughing pump or on the chamber? 

Dave Deiwert: There is almost always a connection point where I describe my preferred location, especially with furnaces manufactured in the last twenty years. On new furnaces sold today, it’ll be an NW25 flange, which will match up directly to the leak detector.  

With the leak detectors in this industry, we’ll have an NW25 flange, which is a standard vacuum connection. You run a bellows hose from that leak detector to that point on the furnace.  

I like to see a manual ball valve that’s always on the furnace at that point. You can put a blank cap on the exposed port on that valve, which can act like a dust cap. It’s always there. This facilitates doing a PM leak check, which we might talk a little bit more about later.  

Now, sometimes you may go to hook it up between the blower and the furnace or the blower and the diffusion pump and there’s no connection there.  

I’ve seen that, so you have to work with what you’re given. You might well see there’s a port between the blower and the backing roughing pump,  

and you can use that. It’s just not the optimal place to put it. 

If you put the leak detector directly on the chamber, typically there’s a small port that you can hook up to, now you’re going to be competing in what we call molecular flow with a much larger opening going to the blower. The lion’s share of helium is going to go out that large target to the blower, and you’re not going to get as much helium signal to the leak detector. So, putting the leak detector port basically right into the end of the flow, going to the blower lets you sample the flow going in that direction. 

Doug Glenn: Right, which is going to be the bulk of it. 

Dave Deiwert: Yes, and you’ll find a faster response time and faster cleanup and recovery of the leak rate signal when you stop spraying the helium by putting it in that location. 

PM Leak Checks During Furnace Operation (00:18:05) 

Doug Glenn: You briefly discussed conducting PM in the column. Can you walk us through conducting a PM leak check during a live operation of the furnace.  

Dave Deiwert: First off, when you’re going to do a preventative maintenance (PM) leak check on the furnace, there are two scenarios. In the first scenario, you’re not running the furnace today. So, you roll the leak detector up and you look for leaks that you may not know are there when they’re smaller and less noticeable, so you can either mark them or repair them at your convenience before they get to be larger and more noticeable, maybe affecting quality of your process.  

The second scenario is that you have a very long process. You might have enough time to do a leak check while the furnace is in process. Helium is an inert gas. If you pull a vacuum on your furnace to do some heat treating, and it’s going to be in that vacuum level for an hour or more, this may be plenty of time to do some leak testing. We definitely don’t want to compromise quality. But again, helium is an inert gas, and if you have an experienced person doing this PM leak check in an orderly fashion, it can be done safely.  

Basically, you roll the leak detector up to that closed ball valve, and you would have to have the ball valve in place there if you’re doing this during a live process. So you connect the hose from the test part to this closed ball valve. You start the leak detector and put it in test. I suggest that after you put it in test, you ensure you have a good vacuum test level vacuum from the leak detector to the closed valve.  

Because we don’t know initially if the vacuum level is different on the other side of the valve, 

Heat Treat Radio #123 Host Doug Glenn and Dave Deiwert

I recommend momentarily stopping the test of the leak detector. I think all modern leak detectors have a standby mode so you’re not venting the test for a leak detector. You put it in standby, then you open the ball valve, and the leak detector computer can now see if the vacuum level changed to maybe potentially a level a little higher than what it wants to be at. That allows it to tell itself to pull some more vacuum along with the furnace before we actually open the test valve to the analyzer cell or the mass spectrometer.  

If you’re in test, you open the ball valve, and somebody forgets that step, there can be a little vacuum differential and you may shock the leak detector and throw it out of test. This doesn’t hurt the leak detector. You just have to go and press test again. But by putting it into standby and then opening the ball valve, then putting it back into test, this saves you a step. 

Once you put it into test, the next thing you’re going to make a note of is the background level of helium before you start spraying helium. I’m a big fan of people who leak test their furnace, or really anything no matter what market is, and take care of their furnaces purposefully.  

If you don’t suspect any leaks or it’s a brand new furnace, you can hook your leak detector up and you put it in test, and before you spray any helium, make note of what I call the background helium signal. This is a result of any natural helium that’s in the furnace. There is five parts per million helium in the air we breathe. There’s going to be helium in the furnace, and take note of what that is.  

Let’s say you notice you have two times ten minus nine background of helium on the display of the leak detector, and you haven’t sprayed any helium, you can make note of that.  

So now you know you’re going to be looking for leaks for some delta change increase of that value. From there, it’s playing the hot and cold game as you pinpoint where the leak isas you spray helium.  

You can do this potentially while a furnace is in process. You certainly want everybody to know what you’re doing and have an opportunity to discuss this because it could make people nervous, especially the quality manager or even the production manager. It’s something that should be talked about with the whole team to ensure everybody sees the value in it.  

So we spray helium and make a note of anything we see. Next time we have an opportunity, when no production is going on, we can fix that leak at our convenience rather than wait until it might get worse. 

Doug Glenn: Certainly we would want to consider whether that should be done with high-value items in the furnace. 

Dave Deiwert: Yes, unless everybody is on board and understands, and you’re doing things purposely.  

If you are doing a PM leak check on a sensitive process and quality of a product and you’re done testing, that manual ball valve needs to be closed before you do anything else to the leak detector. If you forget, and you press vent on the leak detector, it’s going to try to vent that whole furnace through the little vent valve of the leak detector, and that’s not going to be good. 

This whole discussion point is that everybody on the team would need to buy into this idea and be very clear about what we’re going to do, how we’re going to do it. 

I’m just suggesting it’s something that can be done, and if you confirm it works for you, it has value. It’s just another option for somebody to optimize the way they take care of their furnace. 

Confirming Leak Location Before Repair (00:23:38)  

Doug Glenn: When you’re isolating a leak, how important is it to assume or not assume that you found the leak once you get a reading on the on the meter? 

Dave Deiwert: I spend a lot of time on this topic in every class that I teach because nothing is more frustrating than thinking you have found the leak when you haven’t.  

Let’s say you think have found the leak on some big 10-inch gate valve. Maybe it’s too heavy for one person you have to have someone to help you take this gate valve off the system. Once you take the gate valve off the system, you put a repair kit in there, clean everything, you put it back on the furnace, and everything’s assembled. You start to furnace back up and you do a leak check and realize you still have the same leak you thought you fixed. There may be other flanges you need to check, which might require more help.  

You absolutely, beyond the shadow of doubt, can know that you have found the leak because every time helium is sprayed at that place where you think the leak is, you should get the same response, same response time, same peak leak rate.  

If I spray the helium at point A, where I think the leak is at, and I stop spraying, I wait for the leak rate to go back to baseline, then I go back to spray it again. The more work that is involved, the more I’m going to want to duplicate that response and make sure that is where the leak is at.  

Last thing you can do, just to be sure, is what I call the “x, y, z axis.” Try to spray helium left, right, up, down, back and forth, just to make sure you’re not getting a better response to something else nearby.  

Doug Glenn: By better response, do you mean a higher measurement of helium that comes through or comes through more quickly? 

Dave Deiwert: That’s correct. Now, you might have the problem where there are 2, 3, or 4 connections right in the same general area, and it’s difficult to pinpoint where I’m getting I think the same response, no matter where I’m spraying the helium. To remedy this, you can put a barrier between two fittings. This barrier could be plastic, tape, putty, your hand. Try to put some barrier between the two connections so when you spray on one side now, you’re not really getting the same response you were before and can pinpoint the location of the leak more accurately.  

This is an important step before you repair or remove something. If you remove a NW25 flange and you’re wrong, there’s not a lot of pain and suffering. But I guarantee you 100%, you can prove to yourself with some patience and some diligence where the leak is before you do the work of disassembly and service. 

Doug Glenn: It is better to invest a little time in detection than to repair something that doesn’t need to be repaired or find out later that you fixed the wrong piece.  

Dave Deiwert: Absolutely. 

Repair vs. Replace: Leak Source Components (00:26:44)  

Doug Glenn: Once you do find the leak and it’s through some sort of a device, whether it’s a feed through or a control or a valve, how do you decide whether to repair that item or replace it? 

Discerning when to repair or replace

Dave Deiwert: If the device is something that you can disassemble, and if the manufacturer has a repair kit (a valve is a good example of that), I would recommend that you go ahead with a repair. You have already taken it apart, I would put the part in a repair kit, if you have one, to try to lengthen the time between now and the next time you look at it.  

If it’s a piece that has no repair kit, then obviously you will need to repair it or replace it, depending on your skill level and what it is you’re looking at. 

If you’re looking at thermocouple and the feed screws on it are leaking, you may be a little limited in what your options are. Can you apply a vacuum-friendly sealant to brush around the feed throughs to see if that would solve the problem? That may be an option. What is the cost of that thermocouple? If it’s a $20 item, I’m probably going to put another thermocouple on there. If it’s a $1,000 item, I might try brushing some vacuum-friendly sealant on and see if that takes care of the problem.  

One time, I found a leaking rotary vane pump, back in my field service days.  

These all have repair kits where you can replace all the gaskets, the vanes, everything. But I didn’t have one. This was early in my young career. I talked to the factory about getting one and they were going to send one. But I told the client that we had nothing to lose. Let’s open it up, see what we can find. So, we open that pump up, and it looked pretty bad inside, but we cleaned everything up, even the gaskets, put a little vacuum sealant on, and put it all back together. We made it leak tight, and we got it running again. If I had a repair kit, I’m already there, then let’s go ahead and put the repair kit in. But if you don’t have one, there’s nothing wrong with taking it apart and seeing if cleaning and  

reassembly gets it going for you. 

Rotary Vane Pump Field Advice (00:30:30)  

Dave Deiwert:  I’m going to give a little free advice, no extra charge, to people talking about rotary vane pumps. In my career, I’ve come across quite a number of rotary pumps that were having an issue. I can count on one hand, however, how many times I wasn’t able to just clean it, put it back together, and get it going again with fresh oil. And both those times involved a shaft seal leak. So, if you don’t have a shaft seal leak, in my mind, you’ve got nothing to lose by taking a rotary vane pump apart, cleaning it, and putting some fresh oil back in it.  

If you’re using solvents, when you take it apart, make sure those are solvents cleared back out of there  

because solvents and oil don’t play very nice. You want to make sure that solvents have been removed and degassed from your pump. This may require that you put oil in it, run it for a little while, then flush it, and put some oil in to make sure you don’t have anything remaining behind.  

A little willingness to get your hands dirty, open up the rotary vane pump, and a very good chance that you can get it going by just doing that. 

Doug Glenn: All right, Dave. Appreciate the good advice and your expertise. 

About the Guest

Dave Deiwert

Dave Deiwert has over 35 years of technical experience in industrial leak detection gained from his time at Vacuum Instruments Corp., Agilent Vacuum Technologies (Varian Vacuum), Edwards Vacuum, and Pfeiffer Vacuum. He leverages this experience by providing leak detection and vacuum technology training and consulting services as the owner and president of Tracer Gas Technologies

Learn more about Dave from Heat Treat Today’s July Digital Edition’s Meet the Consultant page.

For more information: Contact Dave at ddeiwert@tracergastechnologies.com



Heat Treat Radio #123: Helium Leak Detection Tips for Vacuum Furnace Operators Read More »

Heat Treat Radio #122: Lessons Learned from the Nadcap Certification Journey for Multi-Cell Furnaces 

In this Heat Treat Radio episode, Doug Glenn talks with Andrew Chan, sales and applications engineer, ALD Vacuum Technologies North America Inc, Kelly Peters, vice president of operations, and David Dillon, maintenance manager for ALD Thermal Treatment Inc. 

Listen as guests share their experiences navigating the complex requirements, challenges, and organizational changes needed for Nadcap certification. Their journey discovering how multi-cell heat treatment furnaces can come into Nadcap compliance underscores the importance of technology, training, and continuous improvement.

Listeners will learn practical insights into achieving and maintaining Nadcap accreditation for advanced heat treatment processes. 

Below, you can watch the video, listen to the podcast by clicking on the audio play button, or read an edited transcript.


Introduction (01:13)  

Doug Glenn: In preparation for this episode, we discussed the situation that sparked our desire to engage in this conversation, which involved both ALD and some of your customers. We wanted to discuss people not knowing that a multi-cell heat treatment furnace could be Nadcap-certified. Can you tell us a little bit about that? 

Andrew Chan: ALD participates in all the major heat treatment trade shows, including the last two Furnaces North America events, and we noticed a lack of awareness that multi-cell heat treatment furnaces can be Nadcap certified. We found through interactions with visitors at our booth and conversations during the social hours that people really had it engraved in their minds that only single cell heat treatment equipment could be Nadcap certified. 

This was true until about five years ago with the newest revision of AMS2769D. Therefore, the real impetus is just to bring awareness to the industry that you’re now able to certify and use multi-cell heat treatment equipment for aerospace applications. With that, you get volume capacity, which historically has been associated with the automotive industry, both the OEMs and their suppliers, but we can bring that benefit to the aerospace market and lower heat treatment costs. 

Understanding Multi-Cell Furnace Systems (05:15)

Doug Glenn: What are multi-cell heat treatment furnaces, how are they designed, and how do they work? 

Andrew Chan: An example of a multi-cell furnace is our ModulTherm® or our SyncroTherm® furnace. As you can see in this image, these are individual vacuum chambers, which we call a treatment cell, and you can line up about fourteen of these in a row. Each one is dedicated to heat treating a single load.  

ALD’s ModulTherm® system, an example of multi-cell furnaces

The treatment cell has its own insulation, heating elements, process, and gas; all of these are serviced by a single transfer car that you can see down at the end of the rail with the track. Then, our quenching cell is attached to that transfer car. We have this movable transfer car that loads and unloads the parts, and then we quench them immediately after pulling them out of each treatment cell. We can also do oil quenching, but the oil quench would just be a fixed tank — it would not be on this movable transfer car. 

Doug Glenn: Are you talking about a high pressure gas quench? 

Andrew Chan: Yes, this is a high pressure gas quench. Historically it’s been helium, but we can also do nitrogen, since helium costs have started to increase over the last couple decades.  

Doug Glenn: Is that transfer car under vacuum during the transfer? 

Andrew Chan: Yes, everything is done under vacuum. We transfer between the red doors, which are basically like isolation doors. When we pull the load out to quench it, it’s done very quickly, also under vacuum, we quench up to 20 bar. 

Doug Glenn: Is this your ModulTherm model? 

Andrew Chan: Yes, this image is of our ModulTherm. This second image is of our SyncroTherm model, which is like a mini ModulTherm.  

Nadcap certification is possible for multi-cell furnace systems, like the SyncroTherm®

We describe this model like a pizza oven. We have multiple hot zones stacked on top of each other, and the footprint for the hot zone is approximately 500 x 600 millimeters. It is a smaller footprint than the ModulTherm model. Everything is under the same vacuum environment, and then similarly, we have a transfer — a telescopic loader that moves the load between the hot zone and the quench — and then a single quenching chamber, which also functions as the inlet and outlet for the load. 

What is Nadcap Certification? (8:25)

Doug Glenn: What is Nadcap certification? 

Kelly Peters: Nadcap certification is a comprehensive approach to aerospace and specifications. It covers maintenance, pyrometry, heat treater training, quality control, and even contract review. It focuses more on the process, not so much on the product, and it is audited by a third-party organization called PRI (Performance Review Institute).  

PRI will review your processes, supporting data, and entire management system. The accreditation process involves an internal audit completed by the organization with some corrective actions. Then, you can complete your initial audit with PRI.  

You must complete that internal audit first, and then once you go through the initial audit, you’ll be assigned a staff engineer. This person will review the findings from that initial audit, as well as your corrective actions and supporting data.  

If the staff engineer approves, you’ll move on to the next stage, which is actually going in front of an engineering team where they vote on whether you’ll be accredited.  

When it comes to heat treatment specifically for Nadcap, however, the audit really covers all of your AMS specifications, processes, relevant instrumentation, pyrometry, etc. 

Doug Glenn: Is the team of engineers that you mentioned internal or through PRI? 

Kelly Peters: They are through PRI. 

Doug Glenn: Is this certification and audit exclusively for the aerospace industry or is it applied to other industries? 

Kelly Peters: Nadcap is primarily for aerospace and defense. 

Process of ALD’s Nadcap Journey: Challenges and Timeline (10:25) 

Doug Glenn: Once you realized that you could Nadcap certify your equipment that Andrew and his team build, how did your Nadcap process go? Can you tell us how you got started and the timeline? 

Kelly Peters: The process was definitely very intimidating at first. In general, I would say the average time period in the industry is about 18 months of preparation before you find yourself going through the actual PRI audit.  

In our case, it took us about a year. We had a lot to do within that year. There were four months that it was all initial procedure revision. This step involves reviewing maintenance, production, and quality control processes and procedures to ensure they meet Nadcap requirements.  

You also have to go through commercial compliance. Therefore, you want to ensure that you’re meeting those specifications from the commercial side, specifically during contract review and processes.  

The largest portion of preparing was data collection and organizational changes, which took us about six to seven months to accomplish because you have to gather all the data necessary, implement changes, and then make those changes daily to ensure you’re actually in compliance.  

By the time you do your self-audit, you’re already zoning in on those items and initiating corrective actions to prepare for accreditation. About two months later, we scheduled our actual PRI audit and had them on-site. 

Doug Glenn: What do you mean by “organizational changes”?  

Kelly Peters: I’m implying changes to operational organization, for example, your management system.  

Overcoming Doubts and Technical Hurdles (14:28)

Doug Glenn: Dave, I assume you were involved with this process from the beginning.  

Dave Dillon: Yes, I was involved quite a bit. 

Doug Glenn: Were there any major potholes that occurred where you had to change a flat tire after you hit it? 

Dave Dillon: The biggest issue initially was how new the process was to us, which felt overwhelming — we didn’t know what to expect. As such, we had self-doubt. When we overcame that and started getting into the nuts and bolts of the process, the biggest challenge was reviewing our existing requirements from customers and our controlling standards, ensuring they met the Nadcap requirements. If they didn’t, we had to bring them up to that standard. 

Heat Treat Radio Episode #122 Andrew Chan, Kelly Peters, and David Dillon sharing their Nadcap experience

Doug Glenn: What was the most intimidating piece of the process or that stood out as a really difficult step?  

Kelly Peters: From my perspective, this goes right back to what Andrew said at the beginning of our discussion where there was a time when you didn’t believe you could get this accreditation for these ModulTherm systems. Because we were so ingrained in that thought process — that this was going to be such a hard, difficult challenge to get through — that we had to break through the barrier and realize that most of the challenge is in you, not so much in the system. The specifications are out there. Your job is to follow them. Your job is to implement them. It can be done. 

Dave Dillon: The biggest challenge for me was all the pyrometry requirements from AMS2750. We were doing it all on the fly, and we didn’t hire any additional staffing, so it was very challenging at first. Then eventually we determined that we needed to have our own pyrometry technician to make sure the testing was completed within the time allotted. 

Doug Glenn: When we discussed this before, you mentioned that you guys had engaged C3 Data to help you along the process. Can you tell us about that?  

Dave Dillon: Our pyrometry technician is an internal guy, but we started out by doing everything by hand — all of the paperwork, documentation, etc. Someone had recommended C3 Data to us, and after we reviewed their software, we realized it was a perfect process for us. The software allows us to eliminate human error. It gives you automatic checks, and then it provides a digital record for the auditors — great software. 

Doug Glenn: Kelly, what was your experience with C3 Data?  

Kelly Peters: Dave is definitely the one taking care of the groundwork, so I don’t have personal experience with C3 Data. However, I did notice that our internal findings were less driven by human error, as Dave was saying, because we were no longer using manual Excel spreadsheets and so didn’t have the ability to accidentally hit the wrong number. The data became more reliable. 

Doug Glenn: When it finally came time to do the actual PRI audit, how intimidating was that and how did it go? 

Dave Dillon: To be honest, it was terrifying. We were all nervous because it was all so new to us — it seemed very overwhelming. But the auditors, to their credit, are very good, and they help you through it. The most surprising part of the audit was that we were able to get accredited on our initial audit. 

Doug Glenn: I also understand you earned Nadcap merit. Can you tell us what that is? 

Kelly Peters: A unique aspect of the Nadcap accreditation is that once a company meets a certain criteria, that company can enter a merit program, which means you can go up to 24 months between your audits. Currently, Port Huron is at our 18-month mark, and that happened just after our last audit, so we’re very proud of that. 

Lessons Learned and Ongoing Improvements (19:46)

Doug Glenn: What are some lessons learned from this experience? 

“When it comes to lessons learned, ensuring that your new hires and your current staff are continually getting training, which is true with any type of process in manufacturing and business.”
Source: Canva Pro

Kelly Peters: When it comes to lessons learned, ensuring that your new hires and your current staff are continually getting training, which is true with any type of process in manufacturing and business. For pyrometry, we need to make sure we have a contingency. Dave knows it all, but if Dave wins the lottery tomorrow, we need someone to be able to step in and take over that process. Therefore, continual improvement, training, and reinforcing are critical because it’s all about maintaining a system, just like any other system that you have in place. I certainly would say that is not necessarily a challenge, but something to keep an eye on. 

Doug Glenn: Andrew, were you involved with the Nadcap approval process on the equipment side? 

Andrew Chan: I was not involved with the process for their specific equipment at Port Huron. However, from an equipment supplier perspective, it’s been challenging to help people understand that it’s possible to certify this equipment in the first place. 

We’re starting to see more interest in this now. Since we have this long history with our specific design, it doesn’t require many changes to make the equipment Nadcap certified. We have a comprehensive control system that does everything automatically, including data recording and being able to interrogate the data historically. With a couple tweaks to the equipment, like making sure the gas is dry and clean, and adjustments on the pyrometry side, it’s possible to be certification-ready. You just have to find someone that’s willing to take the equipment and go through the process that the equipment at Port Huron went through. 

Uses of Multi-Cell Furnaces (22:34)

Doug Glenn: What would the ideal company profile be that could benefit from knowing about this certification and having this equipment?  

Andrew Chan: This is dependent upon the parts that a company is producing. The ModulTherm is geared more towards larger pieces. The SyncroTherm is more of a competitive product and we have seen it used for aerospace before. The SyncroTherm is probably the right solution for most of our customers looking to get into this process.  

The ModulTherm is for high throughput, component heat treating. The automotive industry was one of the first industries to adopt it. In a way, they are more advanced than the aerospace industry, as they were able to adopt multi-cellular heat treatment into their industry. This is one of innovations that the aerospace industry is catching up on. 

We haven’t quite seen the demand on the ModulTherm side yet, but the SyncroTherm is probably the right furnace — something small that heat treats aerospace components with a small footprint and a very rapid turnaround time. 

Doug Glenn: Well, that’s great guys. Thanks very much. Kelly, Andrew, Dave, thanks for being with us. Hopefully it’s going to be helpful to some of our listeners, so appreciate you being here. 

About the Guests

Andrew Chan
sales and applications engineer
ALD Vacuum Technologies North America Inc

Andrew Chan has a background in Materials Science & Engineering and has been with ALD Vacuum Technologies North America Inc since 2020.  Andrew supports ALD’s vacuum heat treatment customers to specify new equipment builds and heat treatment process troubleshooting.  In addition, Andrew is responsible for EB-PVD technologies and assists with the vacuum metallurgy portfolio. 

Kelly Peters
vice president of operations
ALD Thermal Treatment Inc

Kelly Peters has been with ALD Thermal Treatment Inc since 2007, throughout her career at ALD she has held different job responsibilities primarily within R&D and Quality. Kelly Peters is a Heat Treat Today 40 under 40 Class of 2020 nominee.

David Dillon
maintenance manager
ALD Thermal Treatment Inc.

David Dillon has been with ALD Thermal Treatment Inc since 2006, working on equipment installations and maintenance locally in Port Huon. Dave now not only manages local maintenance activities but assists the parent company in equipment installations and services when needed



Heat Treat Radio #122: Lessons Learned from the Nadcap Certification Journey for Multi-Cell Furnaces  Read More »

Heat Treat Radio #121: Equipment And Process Insights From A Rising Metallurgical Engineer

In this Heat Treat Radio episode, join host Doug Glenn as he talks with Katelyn Kirsch, a metallurgical engineer with extensive experience in the heat treating industry. Katelyn discusses her career journey, including roles at Huron Casting, Federal Screw Works, and Moeller Aerospace. She highlights her responsibilities in integrating new equipment and processes, managing thermal processing, and setting up a metallurgical lab. Katelyn also shares insights on the challenges of implementing new processes, the importance of hands-on experience, and the benefits of bringing processes in-house for improved turnaround times. The episode provides valuable perspectives for professionals in the heat treating field. 

Below, you can watch the video, listen to the podcast by clicking on the audio play button, or read an edited transcript.


Introduction (00:00:54)

Doug Glenn: So let me introduce you to Katelyn Kirsch. I’m not going to do too much in the way of an introduction, except to mention the three companies that I’m aware of that you’ve worked at and then I want to ask you a few questions about your background, as well.  

From what I understand, you have a degree in metallurgical engineering from South Dakota School of Mines and Technologies and a master’s degree from Strayer in project management.  

Huron Casting is one of the companies you worked for, then Federal Screw, and then most recently Moeller Aerospace. First off, I want to welcome you, and now can you tell the listeners and viewers a little bit more about what you did at each of these companies? 

Katelyn Kirsch: At Huron Casting, my first job out of college, I was a metallurgist. While I was there, I focused on overall quality of our product, from the point of alloying into a furnace to where we cast it through our heat treat processes, ensuring the chemistry is good because  hardnesses are everything.  

For Federal Screw, I was the metallurgical lab supervisor. I ran our metallurgical lab, managed our thermal processing on our neutral hardening quench temper furnace, our subcritical anneal, and all of our induction processes in-house, and then managed the quality from all of our sub-tier heat treaters that we had to use while I was there.  

At Moeller, I’m currently in the quality engineer role, but I’m helping them bring in their metallurgical lab and also bringing in heat treat and potentially brazing. 

Doug Glenn: I do want to mention to the listeners and viewers of this podcast that Katelyn is one of the 40 recipients of our Heat Treat Today40 Under 40 award for 2024. Congratulations on that. One of the rising young leaders in the industry, which is very good. 

Federal Screw (03:26) 

I would like to ask you a little bit more about your time at Federal Screw, because I understand when you were there, you were involved. I want our listeners to kind of get inside of your head on how it works inside a manufacturing plant that’s doing thermal processing. How do people think about integrating new processes and new products? You were responsible for introducing a new part line at Federal Screw. 

Katelyn Kirsch: While I was there, we already had our neutral hardening and temper line, and we had one induction hardening process. When I started, we were getting ready to bring in another induction hardening process on half shaft axle bars. So, we got the equipment probably about a year and a half after I started, and I was responsible for getting the line running and conforming parts off our heat treat line.  

I’ve done induction before, so I figured this isn’t going to be too difficult — I was sorely mistaken. It was a much bigger project than any of us anticipated. We were bringing parts in from the incumbent, which was our customer as well. They had been doing the parts for 40 years, so they knew exactly how to do this. They’d been doing it, and we were coming in and right off the bat trying to get going.  

With Covid and everything at the time, it really shrunk our developing process. We were on an expedited timeline trying to get it going. So, we just had to throw it at the machine. We were going to try “x, y, and z” and just see where it ended up and start tweaking from there. We were trying to get to know the equipment while we were developing. It was a long, grueling process — many long nights. 

Doug Glenn: I can imagine. Were you involved in the selection of the induction equipment or was that already done when you got there? 

Katelyn Kirsch: They had selected the equipment before I started, but beyond that, I was involved with the selection of lab equipment, completing the runoffs, and working with the equipment manufacturer to make sure we had everything we needed. 

Doug Glenn: That whole process was painful primarily because of how quickly you had to have it up and running, correct? You didn’t have time to really thoroughly vet it.  

Katelyn Kirsch: Yes, it was a very expedited process. After we had the equipment set up, we kept hitting one hurdle after another, where we thought, “Okay, this isn’t working, I have to pass this hurdle.” We would come up to a speed bump, fix it, and keep moving forward. 

Doug Glenn: How many people were involved on the team at Federal Screw in the integration of this new induction process? 

Katelyn Kirsch: On the actual heat treat process itself, it was primarily me, and then our engineering manager or manufacturing manager set up the rest of the line. We were trying to set up the machining process because we were trying to do everything at once, like a robotic line. They load parts in the machine, and it just continues through until the parts leave the temper furnace. 

Doug Glenn: So you were trying to automate the whole thing? 

Heat Treat Radio #121 Katelyn Kirsch (left) Doug Glenn (right)

Katelyn Kirsch:  Yes, we were trying to handle the manufacturing side, and we had a program manager who was trying to help on the heat treat side to at least arrange people. We had people to help with testing and on the mechanical side if I needed help trying to work on a machine. We had a couple programmers in charge of the automation of the robots, but it was primarily myself on the specific heat treat side, and then my lab techs trying to run product, test product, run more samples, and test more samples. 

Doug Glenn: Other than the internal team, did you find yourself utilizing any resources external to Federal Screw, besides the company that you were doing the work for? 

Katelyn Kirsch: Besides the company we were doing the work for, we didn’t really need to outsource until we tried eliminating heat treating a certain area of the part. We were getting quench crack failures on these parts — it was almost just inherent to the process of how the part had to be heat treated — and there were certain methods you could use to mitigate that. You could try to eliminate for a while, but it was something that was inevitably going to happen. It was a very thin section, and when we would heat that up to harden and quench it — I’m pretty sure you know what’s going to happen. 

Doug Glenn: As we say, it’s not all it’s cracked up to be. Which part was it?  

Katelyn Kirsch: Half shaft axle bars. 

Doug Glenn: Before we move away from discussing Federal Screw, as you look back on that experience, were there any major lessons that you brought with you to Moeller — anything that you learned about the metallurgical industry, your specific job, or metallurgical labs? 

Katelyn Kirsch: Going through school, you’re going to learn all of your technical knowledge, all the theories that you’re going to apply throughout heat treating. But working especially at Federal Screw, you learned the most from the operators. Becoming a good friend with my operators at Federal Screw, I learned more about the heat treat process, like what I would need to tweak in a furnace. I know what a book is going to tell me to do, but a book and practice are not always the same thing. 

Doug Glenn: Are you talking about the induction equipment operators? 

Katelyn Kirsch: Yes, induction equipment operators, like a hardening furnace operator, temper furnace operator. On the induction machine, I was so integrated in that process, I could get my data from a test bar. I would know if I needed to up my amperage or take it down. I was so involved in that process that I knew more than our operators because it was just a robot running it, essentially. If I was gone, I was just a call in to the manager of the line to say, “Go up, take out 5%, test it. It should be right where you want it to be.” 

Doug Glenn: Were you able to monitor equipment remotely? 

Katelyn Kirsch: For the equipment they purchased for that line, I was able to log in remotely through TeamViewer into the computer system and help them recover from a failure. If I was off-site or at home, if the machine crashed or if they were getting errors, I was able to log in and see what was going on with the machine. I could give them direction and tell them what to do. Most of the time it was a phone call to tell them, “Hey, watch the robot, make sure I don’t crash into anything and break it.” Then I’d start moving everything from home. 

Doug Glenn: Was it actually a robot or was it more just like a scanning station?  

Katelyn Kirsch: It was a gantry system. The parts would leave a cleaning line and would basically just roll over to the machine. A gantry would pick them up, bring them, put them in the machine. The machine itself is a scanning induction machine. So, it would do the hardening, then the gantry would take those parts out, and put new ones in.  

Doug Glenn: I assumed you had a scanner, an induction scanner of some sort, since you were talking about half shafts. So, it was basically a gantry system to load and unload,  and then when it unloaded, it went straight from there to a temper furnace. 

Katelyn Kirsch: It went back to another conveyor, and the conveyor rolled straight over to another robot that would pick them up on another conveyor that would take them over to the temper furnace. 

Doug Glenn: Did the robots load a basket full for the temper furnace? 

Katelyn Kirsch: It was a continuous temper,  so it had slots that the bars would rest in. 

Moeller Aerospace (13:08) 

Doug Glenn: Let’s move over to Moeller. Tell us about what you have been tasked with at Moeller? 

Katelyn Kirsch: At Moeller, I’m a vane nozzle QE. But one of the main reasons Moeller hired me was to help bring in the metallurgical lab first. 

Our quality director came from another company and they had everything in-house between their metallurgical lab, coding, heat treat, brazing, etc. So they didn’t have to outsource much coming in. So we were able to start building our plan for our metallurgical lab. We’re a couple months away from doing our first audit — I’m excited. 

Doug Glenn: What are you being audited for?  

Katelyn Kirsch: With aerospace, you have customer-specific audits and then you have Nadcap audits. With our primary customer, who’s probably about 80% of our business, we are going to be doing their audit first so we can start auditing their product in-house, and then we’d be needing approval after that. 

Doug Glenn: So you’re involved now with the Nadcap audit. Will the Nadcap be for heat treat or Nadcap or for a metallurgical lab for testing. 

Katelyn Kirsch: It’ll be the metallurgical lab first. 

Doug Glenn: Have you already purchased most of the equipment for the metallurgical lab? 

Katelyn Kirsch:  Yes, that was my first task. We’re focusing mainly on metal graphic mounts first — we’re not going to be getting into hardness testing yet. But we purchased all that we needed and that was delivered probably about midway of last year. We finished hooking it up and water plumbing, and completed all our venting in November of this past year. So we’ve been able to get in and actually start working with the equipment, getting prepped for the audit, making sure everything’s aligned, and that we are not missing any piece of equipment. 

Doug Glenn: Do you do your own heat treating there for this part. 

Katelyn Kirsch: We will be —we don’t have in-house heat treat yet. 

Process of Purchasing Lab Equipment (17:04)  

Doug Glenn: Tell me a little bit about the process for purchasing the lab equipment. How many people were involved?  

Rehearse with us on what it takes and the difficulty of the process. 

Katelyn Kirsch: It was actually pretty easy on my part. Coming from the automotive sector where with a very high-volume lab, I knew the nuances of equipment purchasing and of training people in a lab. In my opinion, one of the hardest things to train is teaching how to grind and polish a mount. It’s hard to do, it’s very finesse. Even people who have been doing it for 20-30 years can mess it up if they’re doing it by hand.  

Purchasing Equipment

Essentially, I was given a budget after I initially picked out equipment and I was told keep it under $X amount. I picked the equipment, sent the list off to my boss. He went to the CEO and had to sign off for the capital purchase, and then we got everything ordered. 

Doug Glenn: Did you go primarily with equipment you were comfortable with from the past or did you shop around much? 

Katelyn Kirsch: A little bit of both — there were two manufacturers that I’ve worked with in the past that I liked, and I decided to go with a manufacturer that was more stateside so I could get real time help, if I needed it. Also, their price range enabled me to get more of the equipment that I would need and try to keep it under budget. 

Doug Glenn: Being somewhat stateside was important here for service and replacement parts or whatever you needed. How large is Moeller, employee-wise?  

Katelyn Kirsch: I think we’re about 270-300 employees. 

Doug Glenn: So you have purchased testing equipment, you have it in place, and you’re at the point now where you can start getting the certification that your customer requires. You’ll get that down and then move onto a general Nadcap certification. 

Have you done one of these audits before?  

Katelyn Kirsch: Not specifically this audit. In the automotive industry, I had to do the CQI-9 self-assessment, and I was always involved with the audits when we had our INTF audit at Federal Screw. I had to walk them through the heat treat process and the lab side of that audit.  

Doug Glenn: Is this the first lab audit you’ve completed?  

Katelyn Kirsch: Yes, this is the first lab-specific audit. I’ve reviewed their specifications, so I think it shouldn’t be too bad. 

Doug Glenn: Are you in the midst of it now? Where are you in the process? 

Katelyn Kirsch: We’re prepping for the audit currently. We’re aiming for a march audit date. So we’re in the final stages of documentation. 

Doug Glenn: That’s coming right up. Is there anything else you’d like to say regarding the audit process or equipment selection process that you think would be helpful to other people that may be in your shoes? Any lessons learned? 

Katelyn Kirsch: If it’s something that you’re not familiar with, if you have a colleague that has equipment that you can get your hands on, or if you’re in the position that we’re in where we are trying to bring processes in-house, and you have a good relationship with your customer who might have a lab, see if you can get in and work with and see that equipment. I know there are many companies that have satellite labs that you can see the equipment firsthand.  

That’s what drove much of my purchasing on the lab equipment itself was knowing and being familiar with what works well, what we would need to make it an easy training process, and make it as smooth as possible. 

Doug Glenn: The drive to bring these processes in-house was basically control and timeliness. Were you not able to find labs in the area that you were comfortable with? 

Katelyn Kirsch: No, it’s primarily the turnaround time. In aerospace, when we go to work on what we call an MPI, which is essentially a product launch, we lose competitiveness. We do electrical discharge machining (EDM) in-house. When we have to send those out for a lab cut up —the lab that we use could take 2–5 weeks. You get stuck waiting and hoping it comes out good, and then possibly find out it failed and we have to go back and change it. 

It’s the same reason we’re bringing heat treating in-house and then brazing, to have a quicker turnaround time, and it’s easier to diagnose. We could run a sample; if it fails, we can go back and run it again. 

Advice for the Next Gen of Metallurgy Professionals (23:15) 

Doug Glenn: You’re one of the younger professionals in the industry. Is there anything you would say to younger people still high school or college age that are thinking about getting into either metallurgy, metals, metals industry, thermal processing etc. — any advice? 

Katelyn Kirsch:  If it’s something that you’re passionate about, go for it. The schooling might be scary, but it’s very rewarding. I felt good about school all the time. It was something that you could put your hands to and see what you did.  

When you get into the industry itself, become best friends with your operators. I’m a big proponent of knowing you can learn anything from A to Y in your textbook, but that last letter, Z, you’re going to get from your operators who have been running the processes. They know more about what they can do, what’s happening in their equipment, and what’s happening in their furnaces that your book is not going to tell you. It’s going to be that practice that’s going to help put the final polish on your process and getting performing parts. 

Doug Glenn: Speaking of polishing, what drew you into metallurgy? 

Katelyn Kirsch: I started off my schooling as a mechanical engineering major. I was in my third year of schooling and I was bored. I didn’t have joy in my homework. I didn’t really see myself being a mechanical engineer. I didn’t see myself being able to have a career. As a mechanical engineering major at South Dakota School of Mines, we have to take a metallurgy class. Once I took that class, I thought it was really interesting. You have your basically forensic science and then going to failure analysis, and I thought it was interesting. So, I talked to the head of my department, and I switched majors. Honestly I was overjoyed — it was the best decision I’ve ever made. 

Doug Glenn: What did you enjoy about it?  

Pursuing Education

Katelyn Kirsch: I learned really well based on theory and how to derive from where you came from, and metallurgy is a lot of deriving to find your problem. There’s no one key solution in metallurgy to fix a problem. I love learning that way. I love that kind of process. 

Doug Glenn: Putting all the parts together, and figuring it all out. It’s pretty interesting. I often find when we do a series of episodes called NextGen, which you would fit in nicely, we talk more about your personal experience, and I’m always fascinated that when we ask people, “Did you ever think there was so much to metallurgy?” It’s just fascinating when you get right into it. There’s a lot to be learned, and there’s a lot of mystery out there still about how things work. 

Katelyn Kirsch: They had three different branches for the major. You had your physical metallurgy, you had your extractive metallurgy, and then your pyro metallurgy, essentially your heat treat processing. I did very well in the extractive classes, but I disliked it. I got great grades in those classes, but I did not like them. It was more of the physical and the processing side of metallurgy that I was keen on. 

Doug Glenn: That’s very good. Katelyn, thank you very much. Thanks for spending some time with us. I know you probably have to get back to Moeller and start actually doing some real work getting ready for your Nadcap audit.  

About the Guest

Katelyn Kirsch
Quality Engineer
Moeller Aerospace

Katelyn Kirsch has a Bachelor’s degree in Metallurgical Engineering from South Dakota School of Mines & Technology and a Master’s degree in Project Management from Strayer University. Her time in the industry began at Huron Casting Corporate Services as a metallurgical engineer. Through her work experiences, Katelyn has gained technical knowledge across many disciplines: various processes for making steel in a continuous casting mill and shell casting foundry; heat treating for components from different industries, and multi-industry metallurgical inspections. She has developed strong skills in the lab including handling testing production samples, failure analysis and material characterization, and Production Part Approval Processes (PPAP), such as PFMEA development. 

Moving from her leadership position at Federal Screw Works to join Moeller Aerospace, Katelyn is on track to assume the leadership of a new metallurgical lab in development, followed by the planning of all equipment being installed, in order to begin validation and certification of the testing process. Her current role at Moeller Aerospace is quality engineer, however, her projects will include the establishing of heat treating and other operations in the coming years. Kaitlyn Kirsch was a Heat Treat Today40 Under 40 class of 2024.



Heat Treat Radio #121: Equipment And Process Insights From A Rising Metallurgical Engineer Read More »

Heat Treat Radio #120: Exploring Sustainable Practices in Heat Treating

In this Heat Treat Radio episode, Tracy Dougherty, President & CEO of AFC Holcroft, and Ed Wykes, Director of Field Service and Aftermarket Sales, join host Doug Glenn as he discusses sustainability in the heat treat industry. They explore the importance of sustainable practices in the design and operation of thermal processing equipment. Whether you’re upgrading current equipment or innovating new, these changes can improve efficiency and reduce environmental impact. This episode underscores the industry’s commitment to innovation and sustainability. 

Below, you can watch the video, listen to the podcast by clicking on the audio play button, or read an edited transcript.


Introduction (01:12) 

Doug Glenn:  Sustainability continues to be a driving force in the design and operation of thermal process equipment, as well as ancillary services that are provided by equipment manufacturers. There are few companies in the North American marketplace who are more qualified to talk about equipment and especially sustainability than AFC-Holcroft. We have two experts from the industry with us today.  

Tracy Dougherty is a 1984 graduate with a degree in tool and die design. He spent his first 15 years in the metal fabricating and stamping industry in various positions, including tool and die designer, application engineer, and manufacturing engineer, before transitioning into a sales role.  

Tracy also spent time in material handling, robotics and automation, and the capital equipment industry before starting with AFC-Holcroft in 2008. While at AFC-Holcroft, Tracy’s done various positions, including sales engineer, sales manager, vice president of sales, and currently president and CEO. Congratulations on that.  

Ed Wykes is our second guest. Ed is currently the director of field service and aftermarket sales at AFC-Holcroft. He has a bachelor of science in mechanical engineering and business administration, with a minor in business and administration from Kettering University in 1998. Also, he earned an associate’s degree in mechanical engineering/mechanical technology from Wentworth Institute of Technology in 1996. 

 Ed began his career as a manufacturing engineer at General Motors in 1998 and has been with AFC-Holcroft for a while. He started as a mechanical engineering manager, and now is the director of field service and sales.  

Let’s talk about sustainability. I want to break our conversation down into two sections. The first section is going to be on sustainability services, which we don’t often think about. We think about equipment being manufactured in a sustainable way, but there are really a lot of services out there that people can use to help improve efficiency and sustainability. Then we’ll talk about some things happening on the equipment front. 

“Green” Services — Sustainability Services (04:40) 

Doug Glenn: “Green services.” What is AFC-Holcroft currently seeing in the industry about people requesting services, as far as sustainable services? 

Edward Wykes: Our equipment is technical in nature, and it should have longevity in the field — decades. To make that happen, there has to be some service and some sustainability that goes along with that. So, it is technical in nature, and we understand our clients’ needs. Whether it’s a shift or just the development of the market, we understand the client is putting more and more emphasis on sustainability and preventative maintenance.  

This comes in many different shapes and forms. As a sidebar, that’s one of the really enjoyable things about working here at AFC-Holcroft — you never know what your next challenge is going to be Every day is a new adventure. But specifically, some of the critical services, as far as sustainability for our equipment in the field, would be National Fire Protection Association (NFPA) inspections that specifically speak to combustion safeties, temperature uniformity surveys (TUS) on equipment, system accuracy tests (SAT), looking at infrared signatures on electrical devices and components. Also, burner tuning is another service that should be regularly considered by our clients.  

Combustion Safety

There are other services that may be a little bit more abstract, but there’s also a lot of value in these services. Engineering optimization is when technical experts from our company go into a client’s facility, whether it’s our piece of equipment or not, and say, “This piece of equipment is 30, 40, 50 years old, and here are some things that we can do that can make this piece of equipment sustainable into the future, but also more green.”  

Reducing utility is an important aspect. Many old furnaces might have had water-cooled components, such as water-cooled bearings, or water-cooled fans. There’s always an interest to eliminate the water-cooled utility.  

There are other areas. For example, an old AFC mesh belt may not have a large discharge door for maintenance at the discharge side of the furnace — our new ones do. Older pieces of equipment can be adapted with that feature, which can be the difference between being down for a week to being down for a day. 

Doug Glenn: Is the large door you mention at the exit side of the furnace for changing the belt?  

Edward Wykes: It’s for a number of things: chute maintenance, clearing out parts, when we get into any sort of belt work. There’s just a number of issues that can occur there, and having a large door at the exit side for maintenance access makes it easier — more efficient, quicker, less downtime.  

That’s the umbrella that these services and updates fall under: less downtime, increased productivity, and reduced cost. All of these updates contribute to sustainability, as well as trying to be more green, trying to be more efficient. Some of these updates are low-hanging fruit. With a little bit of technical assistance, we can bring this to fruition for our clients. 

Gas to Electric Conversions (08:38) 

Doug Glenn: You’ve been around for years, just as AFC and then AFC-Holcroft. I’m sure you have hundreds if not thousands of pieces of equipment out there. I don’t necessarily associate AFC-Holcroft with 100% gas-fired equipment because I’m pretty sure you do electric as well. Are you seeing increased requests for gas-to-electric conversions? 

Tracy Dougherty: We are. We’re still seeing those options on most of our quotes for equipment these days. North America is still a little bit slower to pull the trigger on this conversion because of the cost associated with it. There’s not really a return on investment (ROI) when you look at electric rates in most of North America, certainly in the United States, relative to gas prices — there’s still a big delta there.  

But companies are looking at it differently nowadays. It’s not the same requirement for an ROI within a few years that it used to be because it’s being driven by other things. Companies desire to truly reduce their carbon footprint, which is sometimes a corporate directive, and other times it’s driven by their client base. We’re seeing more and more of it.  

Whether it’s on the services side or on the equipment side, this is an area where we have an advantage in being a part of a larger group. By being a part of the AICHELIN Group, we have sister divisions in different parts of the world, including Asia and Europe. We have collaboration meetings with members of the AICHELIN Group. Because Europe is kind of ahead in many ways of where the United States has been, we have the advantage of seeing what they’ve done and what they’ve had success with. Therefore, whether it’s on the services side or the equipment side, it’s really a nice position for us at AFC-Holcroft to be in. 

Doug Glenn: You kind of have a leg up. That is AICHELIN Group out of Austria, correct? 

Tracy Dougherty: That’s correct. 

Doug Glenn: You’re seeing some increased interest in gas-to-electric conversions. We’re going to talk about new equipment in a minute, but let me just ask you, have you seen an increase in the request for electric-only equipment? 

Tracy Dougherty: Yes, we have. Most of our quotes these days, they’re asking for that option. We have a couple of furnaces out there now that are in the commissioning stages that are electrically heated, where in the past they would have always been gas heated. 

Doug Glenn: Are those North America-based installations? 

Tracy Dougherty: Yes. 

Impact of Push for Reducing Carbon Footprint (12:13) 

Doug Glenn: This is an opinion question, so feel free to tread lightly however you want.  Do you think the Trump effect will have any change with the refocus back to ‘drill baby drill?’ 

Tracy Dougherty: I think it’s certainly going to have an impact in a variety of ways. If we look at the electrically heated, carbon footprint push, I think there were some pretty lofty goals established by certain corporate corporations. Their own CEOs said, “Hey, we’re going to be carbon neutral by 2030,” for example, which is pretty tough if you look at what they’re doing around the globe and what a realistic target is. I think you’ll see the reins pulled back on some of those goals when it comes to carbon neutrality, for example.  

I do still think it’s gained enough focused momentum. There are still going to be companies and corporations that are going to drive it forward, which is a good thing, right? It forces us as an industry to constantly improve on what we’re offering today versus just sitting back and thinking, “Hey, everybody’s fine with gas-fired equipment.” It really forces us all within the industry to continue to push ourselves to explore what the next best thing is for efficiency and sustainability. 

Doug Glenn: I think the rate at which governments were wanting to convert gas to electric was pretty aggressive. Reactive reality is a harsh teacher. You need to do things at a pace people are willing and able to do it and that is economically viable.  

Hydrogen Combustion (14:32) 

Doug Glenn:  Is AFC-Holcroft doing anything on the service side with hydrogen combustion or are you prepping for it? Have you had people asking about it? 

Edward Wykes: The short answer is no, we have not had any hydrogen conversations with any of our clients. 

Doug Glenn: That is not unusual. I had interviewed 2 or 3 experts recently for a speech I had to put together about hydrogen. These were burner experts, and both said, “Yeah, we’re still getting information, but it has cooled off significantly.” Again, I think this is another situation where the economic reality is kind of driving the real pace, as opposed to non-market factors. 

Tracy Dougherty: That’s another advantage of being a part of the AICHLEN Group. Other group companies have experimented and looked at some of these technologies, among others. We have regular monthly meetings to go through what each of the group companies is doing from an R&D perspective. We can continue to be close enough to it to understand what some of the challenges are. 

Doug Glenn: Is that NOXMAT? That’s your burner company, but they’re also out of Europe. 

Tracy Dougherty: They are out of Europe, that’s correct. 

Doug Glenn: Like you said, you’re able to learn from these explorations and have an advantage because you can see it from a variety of perspectives, which is good.  

I want to wrap up the sustainability services portion of this. Is there anything else that AFC-Holcroft is doing right now that is worth noting on sustainability? 

Edward Wykes: To recap some of the things we just touched on here, we do have a good partnership. We are globally supported. It’s a technical company, and whether it’s engineering or field service or even our fab, we’re constantly looking for ways to bring our equipment into the next generation — whether it’s updating technologies on our equipment, changing from older technologies like cam switches to encoders, looking at the latest temperature controllers, or taking clients’ older, obsolete control systems and upgrading them.  

Honestly, it’s a never-ending challenge to just say, “Okay, what is the next thing that we can bring to our client,” whether it’s new equipment or a retrofit to an older piece of equipment that can save them some money, make their equipment more safe, or bring them in line with some of the regulatory committees that we see here on our end. Insurance and plant safety can be driving forces for these as well. We’re fortunate here to have such a technically diverse group; there’s a lot of support and it’s a complete package that we typically can offer our clients.  

Artificial Intelligence (18:10) 

Doug Glenn: So your answer made me think of one other question here, and that is artificial intelligence. AFC-Holcroft is on the cutting edge of technology. Are you using AI on the corporate level or having discussions about it? 

Artificial Intelligence

Tracy Dougherty: We’ve had discussions about it. Some of the discussions so far have been around where we want to use it, where we shouldn’t be using it, which platforms we should be using, and parameters to consider when using AI. 

We had a management meeting last fall up in northern Michigan, Harbor Springs, for the whole group, and we had an AI expert in for us who has worked with the US military for decades. It was a very interesting conversation. So, the short answer is yes. As a group, as a company, we’re looking at it, we’re using it in very minimal cases so far. It’s exciting and it’s scary at the same time.  

Doug Glenn: It really is. That’s a great way to summarize it. It’s like, “Wow, that’s fascinating and great.” And then you think, “Oh boy, what could it be used for?” 

Equipment Sustainability (19:47) 

Doug Glenn: Let’s talk about equipment for a bit, because I know the breadth of equipment and the types of equipment that you manufacture up to this point is very broad. Your equipment is primary air and atmosphere equipment, no real induction equipment that I know of, right? 

Tracy Dougherty: We had an induction company that was part of the group, EMA out of Europe, and we sold that division of the group. I think it was about a year ago or so. So we no longer have induction in the group. 

Doug Glenn: Most of your equipment is air and atmosphere equipment, continuous and batch, semi continuous. From a sustainability point of view, how are you handling upgrades to equipment, and what are you working on? 

Tracy Dougherty: Our modular products are one of our core products. They make up about half of our sales. We’re currently going through a review and upgrade to our modular products, such as the UBQs, the universal batch quench furnaces, the UBQAs, which is the same with the salt quench system, the easy generators, and all of the ancillary equipment associated with that.  

Our engineering team currently is undergoing an upgrade to those furnaces to make sure that we’re going through all of the design, because it’s a solid design. It’s been out there for a long time. We do quite well with it. It’s a very high performing piece of equipment. But we also know that we’re always looking at ways to make them more efficient, more robust, to make them better. We have a team that we’ve assembled to look at those designs and say, “Okay, where can we continually improve those products?”  

We’re doing the same thing with some of our continuous furnaces. Our mesh belt furnaces, for example, are currently undergoing an upgrade for sustainability. How can we save the atmosphere? How can we make them more energy efficient? How can we eliminate downtime through part mixing and some of these other strategies? So that’s also in our engineering team right now where we’re undergoing upgrades to the standard design for those components.  

Getting back to the group, we also have things that we’re doing here at AFC-Holcroft, as well as some of the group companies. As an example, we are looking into industrial waste heat recovery systems. We’re looking at ways to capture the waste heat from high heat furnaces and use that heat for a variety of things, whether it’s in northern climates in winter months, heating a facility, heating the wash water on a washer, a variety of things.  

While we’re doing that here at AFC-Holcroft, the group company is also looking at prototypes and other things for the industrial waste heat recovery systems. So, that’s another area where we’re always looking at ways to improve the equipment and the energy efficiency of the equipment. 

Atmosphere Consumption (25:45) 

Doug Glenn: Is AFC-Holcroft doing anything with your equipment regarding atmosphere consumption? 

Tracy Dougherty: Yes, absolutely. Part of the design upgrades that we’re looking at is the amount of atmosphere that we’re consuming, both on the continuous furnaces, as well as the batch furnaces. We have a high/ low Endo flow on our furnaces, the programmable recipe to go to high flow when you’re transferring a load but then go to a reduced flow. Then the generator supplies the demand based on the furnace’s demands. For the continuous furnaces, we are looking at the type of loading systems we’re putting on pusher furnaces or what we call an eco-box on a belt furnace, which is almost like a nitrogen curtain on the front. With belt furnaces, you have a throat on the front and the back and an opening of a large atmosphere box basically. 

We are looking at ways that we can reduce atmosphere consumption in the furnace by 20% to 30% in some cases.  

Doug Glenn: What is the eco-box that you refer to? 

Tracy Dougherty: It’s a small unit that sits on the charge end of a belt furnace that provides a “nitrogen curtain” on the lower end of the belt. It basically prevents the loss of atmosphere from the furnace itself. That along with unique throat designs that we’ve also tested and looked at are the updates that we are exploring. With any furnace, you’re running that thing 24/7, 365 days a year. Small gains can make a big difference 

Calibration Mode (28:08) 

Doug Glenn: We’ve discussed in the past or I’ve read on your website perhaps something called calibration mode. What is that? 

Tracy Dougherty: It’s a recipe. It’s a separate screen within our batch master system on our batch furnaces. When you put in a new furnace, you have all your presets on that furnace. So when we come in and we set it up and you start running, everything is set to operate to proper operating parameters — everything from the amount of time it takes the door to open and close, to the elevator up and down, to the atmosphere, to the heat up rates, and all of those parameters.  

Calibration mode, which we recently got a patent on, is a test cycle for heat treaters. If we start to see some variation in the hardness levels of the parts or there are other challenges, we can run calibration mode through the furnace. Basically, you put a load in the furnace, a dummy load or a scrap load, or you can run it without a load for that matter, but it’s best with a simulated load. You run it through that recipe, and it’ll give you red/green acceptable levels on every preset parameter for that furnace and be able to tell you whether your door has drifted, for example. So maybe you need to rebuild the seals on the cylinders, or it allows a heat treater to pinpoint reasons or areas where things have drifted from when that was a new furnace and a new install. 

Doug Glenn: It’s for batch furnaces, right? 

Tracy Dougherty: Correct. Right now, we use it on our batch equipment. It’s really a great selling tool for commercial heat treaters as well because if they have clients coming to them they are able to show on their batch equipment that they can identify if there’s any portion of this furnace that drifts away from when the parts were approved through the production part approval process (PPAP). They can see that through this calibration mode recipe. 

Carbon Emissions (30:56) 

Carbon Emissions

Doug Glenn: Has AFC-Holcroft ever been required or voluntarily done anything to measure emissions, carbon emissions most notably? 

Tracy Dougherty: We have within our group. One of our R&D projects within the AICHLEN Group is currently in the development of a carbon emission measuring system on a furnace line. It’s fairly well along at this point, but it’s a prototype that the group is working on. It’s something that is being driven much more in other parts of the world versus the U.S. currently. But I think these are the types of technologies that are coming down the pike so that we will be able to actually monitor and measure emissions on a furnace line. 

Electrically Heated LPC Furnace (31:56) 

Doug Glenn: Tracy or Ed, anything else on the equipment side that you want to mention as far as sustainability efforts? 

Tracy Dougherty: We do have an electrically heated low pressure carburizing (LPC) furnace that we’ve installed and commissioned recently as well. We just went through final acceptance on it. It has a 36 x 72 x 48 effective load size, and it has a 10,000-lb gross load capacity. In this case, it’s the LPC furnace that has a vacuum cooling chamber on it. It doesn’t have a quench currently, but that’s what we’re looking at offering to the industry as well. We have developed the LPC furnace successfully, and so now we have this furnace that we are going to be able to offer to the market that is interested in LPC. 

When it comes to certain parts, certain specifications that require no IGO (intergranular oxidation), we’ll be able to connect oil plants or salt plant systems to an LPC furnace, install it in an existing line, possibly an atmosphere UBQ line, and have it be fed by the same transfer car, but now also have the ability to do LPC with either oil or salt plants. 

Business Sustainability: Partnerships & Joint Ventures (33:40) 

Doug Glenn: I know we’re talking about sustainability, but we need to have business sustainability as well. AFC-Holcroft has had some interesting partnerships around the globe that I wanted to ask you about. The one that was most interesting to me was your AICHELIN ST Vacuum move that you’ve made recently and you mentioned. What is that? 

Tracy Dougherty: It’s a joint venture with System Technique, which is a Turkish-based company. This joint venture is to offer single dual chamber vacuum furnaces currently to the European market. They just installed a single chamber vacuum furnace in a body coat plant in Finland. 

The AICHELIN Group sees vacuum as something that we’d like to expand into, with what we’re doing over here with the LPC that I just mentioned along with this joint venture in Europe. We have a knowledge base in it. You may recall, AFC-Holcroft had about a 10-year joint venture with ALD out of Germany. So, we do have some of that tribal knowledge. It’s not completely new to us. We think we’ve got something to offer the industry with some unique features.  

Doug Glenn: Are you going to be offering that equipment in North America? 

Tracy Dougherty: Yes, we’re currently looking at strategies. Before we introduce it to the market, we want to make sure that we have a good strategy for not only where we’re going to build them, but how we’re going to service and support them from not only a service perspective, but spare parts, critical spare parts, and things like that. We’re going through that process now, but that is our eventual plan. 

Doug Glenn: For your service and aftermarket work, are you all in North America? Where do you roam? 

Edward Wykes: We service all of North America, and we also support our equipment in Europe when it makes more sense for us to do it than the AICHELIN service group.  

Doug Glenn: Do you send a team over?  

Heat Treat Radio #120 Still Image With Doug Glenn (Left), Ed Wykes (Center), Tracy Dougherty (Right)

Edward Wykes: We send employees over and/or do remote service, and we also work with AICHILEN Group to help some of our current clients. There’s a desire on their end to want to learn and understand and be able to service our equipment locally. We work with them on that as well. 

Doug Glenn: Is your service team able to do a lot of remote work?  

Edward Wykes: It’s more and more prevalent as technology advances that there’s a need for remote support, especially with a lot of the controls, upgrades, and these types of technology. This technology lends itself to being done remotely if there is a competent service team on-site at the client’s facility. 

Doug Glenn: Are most of your service team members employees or do you use subcontractors to do service. 

Edward Wykes: For the most part, our service team members are AFC employees. 

Doug Glenn: How many people do you have out in the field? 

Edward Wykes: We usually have anywhere from 5 to 7 people in the field. 

Doug Glenn: That’s a good crew. I understand that AFC-Holcroft is making some investments in the EV, electric vehicle, marketplace with a company in Japan and one in China. Can you tell us about that? 

Tracy Dougherty: The AICHELIN Group has a partnership with KILNPARTNER, which is a Chinese company, mostly for the European market. But if they were to run into a system that they need our assistance with, we have the ability to assist them as needed. That’s a partnership that’s been a few years in the making now.  

We recently signed a three-phase agreement with TOKAI KONETSU out of Japan. Phase one for us with TOKAI is to basically be the North American support team, assisting them in sales efforts, but then to also be here for the service support, commissioning, and installation of their systems. They’re running off a pusher type kiln for the battery powder market, the anode cathode battery powder market over in Japan. We’re sending a team over to go through some training with them to better understand their systems. For us, phase one is the ability to assist them in the North American market because it’s difficult for anybody to penetrate a market if you don’t have local service and support.  

Doug Glenn: The last one I wanted to ask you about was this one in Japan, Sanken Sangyo, with multi-level rotary furnaces for solution, aging, and tempering. 

Tracy Dougherty: Yes, we have had that one in place for a couple of years now. The market is a little soft for that. It’s specific to rotary multi-level rotary solution and age systems, as you said, d5 t6 aging systems. They’re used in the manufacturing of aluminum wheels, blocks, and heads. With the heavy EV push, of course, there’s a good amount of capacity built up for those things. But the opportunities there right now are a little bit soft.  

We’re also looking at that particular furnace design for other ferrous applications, tempering applications in ferrous, because they take up a much smaller footprint. Sometimes, you have these very long belts or chain conveyor tempering type systems that can take up a lot of floor space. Tempering ferrous applications are a very efficient alternative. We have one that we’re looking at now, which is a tempering ferrous application, that we think will fit that very nicely.  

That’s another partnership that is set up very similarly because they, being a Japanese company, have a difficult time over here without having somebody local. It’s a little different in that it’s not a phased approach. We’re going to build the systems over here, right out of the chute. We’ll build them over here, we’ll install them, we’ll service them, and then they will support us from an engineering and reference perspective. 

Conclusion (41:47) 

Doug Glenn: We’ve talked a little bit about sustainability services and sustainability equipment. Then I wanted to take a quick note on some of these partnerships that you had. It’s interesting when you’re working with international companies, like you said, a parent company in Austria, you have partnerships in China, Japan, all over the globe. You get the perspective, especially on the sustainability side. It is being done a lot more in Europe especially, so you have a unique position.  

Thank you for your time today and for sharing your expertise.  

Tracy Dougherty: One more thing I wanted to mention on the on the partnership side of things. I would be remiss if I didn’t mention our partnership with Mattsa down in Mexico. It’s kind of the other end of the spectrum. With Mattsa, we’re almost extensions of each other. We’re actually going down there this this fall in October to celebrate our 35-year anniversary of working together with the Mattsa team.  

About the Guests

Tracy Doughterty
President & CEO
AFC Holcroft

Tracy Dougherty received a degree in Tool & Die Design in 1984 and worked for 15 years in the metal fabrication/stamping industry in various positions. He has experience as a tool & die designer, applications engineer, and manufacturing engineer before transitioning into a sales role. He worked in materials handling, robotics, and automation capital equipment before starting with AFC Holcroft in 2008. He is currently the president/CEO of AFC Holcroft.   

Ed Wykes
Director of Field Service and Aftermarket Sales
AFC Holcroft

Ed Wykes completed a Bachelor of Science in Mechanical Engineering and Business Administration with a minor in Business Administration from Kettering University in 1998. He began his career as a Manufacturing Engineer at General Motors in 1998. In the years following he held positions as an Automotive Market Manager, Account Manager, Sr. Marketing/Sales Engineer, and Program Manager. He started at AFC-Holcroft as a Mechanical Engineering Manager before becoming Director of Field Services.  



Heat Treat Radio #120: Exploring Sustainable Practices in Heat Treating Read More »

Heat Treat Radio #119: Solvent vs. Aqueous Cleaning: Choosing the Best Method for Your Process

In this Heat Treat Radio episode, host Doug Glenn sits down with Fernando Carminholi, the business development manager at Hubbard-Hall, to discuss solvent and aqueous cleaners and why cleaning is a crucial step in both pre and post thermal processing to ensure quality part outcomes. Fernando offers practical guidance, discusses solvent vs. aqueous cleaning methods, common pitfalls, and upcoming EPA regulations that could impact the industry.

From production to engineering to quality, there are valuable insights for everyone on optimizing cleaning process for better part quality, longer furnace life, and maintaining compliance in the latest regulatory environment.

Below, you can watch the video, listen to the podcast by clicking on the audio play button, or read an edited transcript.



The following transcript has been edited for your reading enjoyment.


Doug Glenn: Welcome to Heat Treat Radio. I would like to start off with some parts cleaning basics. Do all parts need to be heat treated? Why do we do cleaning? And what are the risks of not cleaning?

General Parts Cleaning (01:40)

Fernando Carminholi: Thank you for this opportunity to talk about cleaners and the importance of cleaning. We’re going to focus on the cleaning before the heat treat, but there is also a cleaner after the heat treat when you remove quenching agents.

You asked how to know if parts need to be cleaned. And my answer to that is “yes,” and it could be “maybe” as well. The “maybe” is because some really light oily parts with light oil go to the furnace and there is not a problem. I would say that maybe 10% of all the parts heat treated do not need cleaned in any kind of operation. They go from stamping or deep drawing straight to the furnace.

But the rest — the 90% — will require cleaning. And that’s exactly what we’re going to talk about today.

Approximately 30%–35% will pass through a solvent cleaning. When we’re talking about solvent cleaning, there are two different ways to clean parts. One is the well-known technology of open-top degreasers. You have your solvent in a proper tank, and then you have some chillers on top to hold the vapor; this is called a “vapor degreaser.” You see a lot of these machines on the market from the 80s and 90s.

Another way to use solvents is in a closed vacuum machine, which is a more technologically updated machine.

And the rest of parts, I would say more than 50%, are cleaned in water-based cleaners, which could be in a spray application, a spiral tunnel, or immersion.

And normally, what kind of oils do we clean? As the years go on, there are new regulations for the oils with all the modernization. Every year the R&Ds work with new kinds of oils — cooling fluids, rust inhibitors, forming lubricants, and deep drawing compounds. Plus, they could be synthetic, and every year the oils become more difficult to remove. That’s the big challenge for the cleaning operation.

Doug Glenn: I assume the solvents must keep up with the changes in the chemistry of the cleaners?

Fernando Carminholi: Sure. Both of the systems have to keep up: the solvents and the aqueous.

Doug Glenn: If I’m hearing you right, Fernando, you’re saying that probably 90% of parts in in the heat treat process are cleaned. Maybe 35% of those get solvent-based cleaning and the rest aqueous-based.

I’ve heard that there are various reasons why we clean. Obviously if you’re going into a vacuum furnace, there are different reasons for why you clean than if you’re going into an air and atmosphere furnace. You’re wanting to make sure you don’t drag all those contaminants into a vacuum furnace. That’s one reason why you clean, right?

Fernando Carminholi: Exactly. But most will be more atmospheric furnaces. And then what do you drag in? Most of the clients we’re talking about move high volumes inside the furnace.

Let’s think about it in two different ways. If you don’t clean at all, or you have a bad cleaning, what is the problem? If you don’t have a cleaner at all because it’s a really light, clean oil and part that doesn’t drag that much oil, it could be fine.

But let’s think about a big operation with lots of oil, maybe fasteners or a kind of part that carries more oil to the furnace; it will produce a lot of drag and it will burn. You will have furnace contamination that will contaminate the oxygen and the carbon — it can cause decarbonization which can affect the hardness and the mechanical properties of the parts. The easiest way to see that this is happening is if there is a lot of smoke, which is common.

Fasteners that may carry more oil to the furnace

Doug Glenn: It is common. And one thought I had is not only will it potentially affect the parts, but it can impact the life of your furnace because you’re getting a lot of contamination, it’s going to need more maintenance, and you can damage your furnace.

Fernando Carminholi: Definitely. It will need more maintenance and shorten the life of the furnace. The smoke can also cause an uneven heat distribution inside the furnace and can lead to warping, cracks, and inconsistent hardness on the part. And that’s the result of no cleaning at all.

Now look at it another way. If you have the cleaner, machine-cleaning solvents or water based, and somehow you’re not cleaning the parts well, you can drag more than oil to the furnace. You can drag other compounds. With water-based cleaners in particular, you can drag the rinses together with all the chemicals.

And you have a different areas, like in nitriding or FNC operations, where the area with the oil that was not cleaned well will suffer some soft spots and unformed hardness — like the opposite of using sunscreen on the beach. You can cause surface defects like heating stains and areas that are well heat treated as well as areas where the structure is not as expected.

Doug Glenn: It’s almost like unintentionally using a stop-off paint on your part.

I want people who may not have dealt with parts cleaning in the past to hear some of these things: Not all parts need cleaned. A good number of parts do. If oil on the surface, or contamination, or spottiness on the finish of the part is not an issue, then you may not need to wash. But a very large percentage of parts that are heat treated do get washed in either solvents or aqueous-based, water-based solvents. And it’s good for the life of your furnace, the interior furnace, the maintenance of your furnace, and the properties of the parts.

Legislation (11:40)

I want to move on to a second topic that I thought would be very enlightening to some of our more experienced parts cleaning people. That is the area of legislation that Hubbard-Hall is aware of that’s going to be coming down the pike that we need to be aware of. Can you talk a little bit about the legislation regarding parts cleaning?

Fernando Carminholi: When we’re talking about legislation, everything that the EPA stated, let’s separate again into two different topics: water based and solvent based. When we’re talking about water-based cleaners, you have to watch out for what kind of raw materials you’re using.

What is the cleaner formulation? Because if you don’t rinse well, that’s something that you need to control in your process. If you don’t rinse well, you’re going to be dragging a lot of those materials. That can cause all the problems that we’ve already talked about. But legislation for water-based cleaners is less problematic.

I would like to wave a red flag right now because if you’re working with some product that will be restricted, you need to change.

And then, for example, you have some restrictions with some surfactants. And it’s based, but, for example, none of the latest. All those new formulations, I would say that they’re already free of.

Another big topic to discuss, and something that everyone is talking about now, is products containing PFAS. It could be in both a water-based cleaner and in the solvent.

Doug Glenn: What are those two things that you mentioned?

Fernando Carminholi: PFAS are fluorinated compounds. You see a lot of these in Teflon based, fire extinguisher foam, and in a lot of different things in the industry. These are forever chemicals. So far there is not a good, stable way to treat and eliminate these chemicals from the drinking water. This is something that the industry is regulating: how to treat and how to waste those chemicals because some of those compounds.

We’re talking about PPT (part per trillion); it’s a really low amount in the drinking water. But this is something to watch out for on the chemicals. This is something that is already suffering restriction, and it’s a hot topic.

Doug Glenn: Are these rules that are coming down federally based or are they state based?

Fernando Carminholi: These are federal. If you look up PFAS, all the surface finishing world and the wastewater world is talking about them. If you look at Congress, a lot of regulations from the government are talking about maybe having different states with different numbers. This is something that is already defining the rules and defining how to analyze and how to treat it.  

Hubbard-Hall already does PFAS-free manufacturing. We decided not to work in this way.

I would like to switch gears a little bit here. With regulations, normally we talk more about the solvents. The solvents we’re talking about — methylene chloride, TCE (trichloroethylene), perchloroethylene, propyl mide — are the halogenated solvents that are already on the list. The EPA is working on this already.

I have a cheat sheet with some numbers I would like to bring up. If you go on the Hubbard-Hall website, you can find this table. To create this chart, we took all the regulations and put them in one table for different solvents.  When the EPA rule was stated, for example, methylene chloride is already finishing. The rule was dated March 2024. All companies have until March 2026 to stop using this solvent as a cleaner. 

Click the image for more information

There are exceptions. For example, if you use them for NASA or federal use, you have a little bit more time. For TCE, you have less than one year; by January 2026th, you’re not going to be able to use TCE as a vapor degreaser.

There are some alternatives for that. If you’re using an open-top machine, fluorinated solvents are an alternative; they have low global warming potential and are non-flammable, stable products. Those are available on the market.

Another alternative is modified alcohol, which is the best choice. This is a formulated alcohol. It’s not a book solvent. It’s a formulated product. It has a good cleaning ability and a good permeability because that’s the beauty of the solvent. It can go between the parts or inside the holes to clean everything. And modified alcohols can be used in the vacuum cleaning machine. It will work almost the same as the vacuum furnace. But on the cleaning side you have all the equipment running in a vacuum and you have a distillation process that will remove oil and the water from the part.

Doug Glenn: I’m curious about that chart that we were looking at. As you know, most of our readers and listeners are manufacturers who have their own in-house heat treating and we get a lot of commercial heat treaters, too. But our core audience are those manufacturers who have their own in-house heat treat. How many of them do you think are using either solvent or water-based solutions that are going to be ruled out by these regulations?

Fernando Carminholi: I would say that today 20% use halogenated solvents that need to be ruled out and switched for another technology. In some states, such as New York and Minnesota, this is already in place. They cannot use them. But the final date rule to be enacted, for example, for TCE would be January of 2026.

The unique one that is just proposed but is not finalized yet is the NPB. I think that will take between 3–5 years to be fully restricted.

Doug Glenn: It seems safe to say that there’s a significant number of people out there currently using cleaning solvents that will be outlawed over the next 3–5 years, so they need to start looking for another technology?

Fernando Carminholi: I would like to wave a red flag right now because if you’re working with some product that will be restricted, you need to change. Or use the same equipment. But as I told you, the fluorinated solvent would be 3–4 times more expensive.

On the other hand, if you’re going to buy equipment to use modified alcohol, there are not that many equipment manufacturers and that’s the limit. If 20% of this market needs to change, they will expect to change six months before. I would say that today you have equipment manufacturing expecting to deliver equipment in six months.

Doug Glenn: People need to keep in mind the lead time that they’re not going to get that equipment that quickly.

Aqueous Based vs. Solvent Cleaners (25:07)

Doug Glenn: Let’s jump in and talk about the pros and cons of using aqueous (or water-based) versus solvent cleaners. What’s the difference and why would we choose one over the other?

Fernando Carminholi: This is a really extensive debate. You can see some videos at the Hubbard-Hall website talking about this. What I see in the market is that companies selling only solvent will always talk poorly about the water-based. Companies that sell only water-based products are talking bad about the solvents and regulations.

I would say that Hubbard-Hall plays on both sides. We understand the best usage for different applications. I would try to go on the really high level. “Hey, I am the solvent side; I need to keep on the solvent side.” Or, “I need to go for a water based.”

First of all, you need to understand the contamination. What kind of oil? We’re talking about the cooling fluid, rust inhibitor, dip drawing, a lot of heavy, chlorinated oil, whether it contains sulfur, or whether it is a polar or nonpolar-based — that would decide what kind of solvent or water-based product you’re going to use. Normally, when you have an oil-based hydrocarbon, it tends to be easier to remove with solvents. When you have a water-based cooling agent or rust inhibitor, that’s easier to remove with a water base. This is one thing to consider, but it doesn’t mean that if you have a hydrocarbon you cannot remove it with water.

A discussion about waste and cost of parts cleaning

Another thing that you need to take a look at is the part geometry. If it is a flat part, it’s easy to remove oils with a spray. Or you may need ultrasonics to remove oils if there are a lot of blind holes and parts really close to each other. That’s an advantage of going to the solvents here because even if you use a really good surfactant, which will change the surface tension, the solvent tends to have a much better permeability — that’s the term for cleaning the really deep holes and the parts really close to each other.

Another thing to consider is I would call overall the EHS. That means what is the company? Is it okay to use inside the factory? Do I need VOCs? Do I need aqueous to be VOC free? For solvents you need to check how flammable they are.

Waste in Cleaning (29:07)

When we’re talking about waste and footprint — what is the difference between the systems? The footprint for solvent is smaller because all you need is the degreaser machine, open top or vacuum cleaner. You clean and you dry. Normally, the drying process is way easier with the solvent.

Plus, you don’t have all the other processes needed for the water based. All the waste generated from the solvent that you have is possibly some water that came from the water-based rust inhibitor or even the oil or some cleaner that is already gone. You have this weighed and then you send for a partner that will pick it up and take care of the waste.

For aqueous, this is different. You will need rinses. You will need a temperature to dry. You need blowers; you need heaters. The o-rings [ET1] may be needed to dry the parts, and that’s a problem. If you leave the water behind, it can lead to corrosion, for example. So that’s a big difference between solvent and water-based.

Doug Glenn: The reason the solvent is not an issue so much with the drag out, where you keep part of the cleaning solution on the products, is because of evaporation? Solvents evaporate much quicker than water.

Fernando Carminholi: Yes, that’s right. That’s why old open-top vapor machines could be a problem because the EPA [MS2] [JM3] tightens limits every year. When you have an old machine with chillers on the top, you have the vapor phase, which is when you heat up your solvent. And then you have the chillers, which is the coil to condensate back. If the chiller is not working well, the solvency will go to the atmosphere. At the end, when you take out your part, it will dry up really easily. When you go for the closed system, you don’t have this emission.

That is another big difference between solvent and water-based. When you have a machine based on the solvent, you feel the machine. Normally, we’re talking about five to ten drums of product, and the consumption is really low. Clients spend one drum every 2 or 3 months for solvent depending on the system. For aqueous, you need all the rinses. So every time that you run a load, you go through the rinse, and you drag solution out of your tank, so the consumption will be higher for water based.

The Cost Debate (33:07)

Doug Glenn: So as far as variable cost, your aqueous system might have a higher operational cost?

Fernando Carminholi: That’s another good debate. The operational costs need to include the equipment as well.

Doug Glenn: I was going to ask about the difference between capital equipment costs. You said the solvent is a smaller footprint, does that mean it is a lower price?

Fernando Carminholi: Yes, I would say for the aqueous, if you need to include ultrasonic, for example, because you need an invasive way to use the waves to clean the parts, it will increase the cost. However, normally the cycles for the water based are lower. You can produce more parts.

No clear winner here when talking about cost

For example, if you were cleaning parts in a plant that already has a wastewater system, you will need to treat the water (possibly 1 to 2 gallons per minute depending on the flow rate on the rinses). This water needs to be treated before it is dumped into the sewage. You also need to follow the regulations and the limits.

But the cost overall depends on the parts. If we start to talk about cost, there’s a big difference now. Not that long ago, before Covid, water used to be cheap. But now water is very expensive. Energy is very expensive. Waste is very, very, very expensive. Then if you take all this rework, it is unacceptable. We like to say, cleaners can be cheap, but poor cleaning is always expensive.

The cleaning process will be cheaper than the heat treated part or even the steel or grinding or blasting. If you take the overall cost, cleaning is nothing. But if you don’t do the best that you can do, it can cause a huge problem, and that’s one thing to keep in mind.

Doug Glenn: Product failure, most notably. The more critical the part, the more important to make sure it’s cleaned.

Is it safe to say there’s no clear winner here when we talk about cost of equipment versus cost of operation for aqueous or solvent?

Fernando Carminholi: It really depends on the parts, the level of cleanliness that you want, and the kind of oil you’re using.

If you have a part that cannot be cleaned with aqueous because there’s a lot of holes and you need to clean inside the holes or the parts are close together, then there is no comparison. But you can bring up a lot of factors and put them side-by-side.

Solvent could be more expensive because of the chemical consumption, but for aqueous you need more equipment. When you’re talking about a vacuum cleaning machine, it will be a substantial capital expense for the equipment — over $1 million.

I’m seeing equipment manufacturers for the vacuum washing machine. They’re looking at the market and they see the problem of the mix of oils and cooling and you can use what they call a hybrid system. On the same machine you can use water-based fluid and then go to the solvent fluid. That’s a new feature in the market.

Doug Glenn: That’s very interesting. It’s a hybrid piece of equipment that starts with an aqueous wash and then finishes up maybe with a solvent washer?

Fernando Carminholi: Exactly.

Cleaning and the Environment (39:03)

Doug Glenn: Let’s move on to the fourth and final topic. I want to wrap up this third thing that we’re talking about as far as the pros and cons of aqueous versus solvent. If a listener has questions about which system makes the most sense for them, I’m sure your team at Hubbard-Hall can help them answer that question.

Fernando Carminholi: The best way to evaluate is to get a picture of your situation. We look at your costs, the pros and cons that you have today, your timeline for changing, whether you’re solvent regulated, for example.

We can do a scenario on how much you’re going to spend on the new line if you need a new line. We do have a prototype line where we can run some tests, different cleaners or solvent, or open-top machine. We can run different scenarios, evaluate the costs, and find a more environmentally friendly solution.

Doug Glenn: The last question I do want to ask you is about the cleaning process. How do we make it more efficient, profitable, and environmentally friendly?

Fernando Carminholi: The chemical manufacturers look it up in different ways. Let’s start with the solvent. Like I told you, there are a few. It’s a really low drag out. But it is dependent on the solvent, especially talking about modified alcohol. All the oil that you bring on the part could contain product that would change the pH of the chemical, and it could go really acidic or it could go really alkaline. That will screw up your machine; that will attack your parts. So, you lost the solution. You can have problems with the seal casket. You can attack the parts if you go acidic.

There are some ways to extend the life, and then you can analyze the solvent. You can add some stabilizers to continuously use the same solution because this is a fairly new technology. About ten years ago, the chemical manufacturers developed way better stabilizers to handle these new kinds of oil that we mentioned to extend the shelf life or the life of the solvent as much as we can. That’s a big savings.

On the aqueous side, what can be done? The problem here is why you dump your process.  It’s because oil as well. Hubbard-Hall does work with a feature that’s a piece of equipment that is a membrane filtration. We built this equipment internally. We have sold it to many clients already. This technology has been on the market for 40 years; it’s well tested. This technology filters the oil out of the cleaner to extend the life of the cleaner.

I will give one example. We have a client with parts that are brake calipers. They need to dump the cleaners every 2–3 weeks. That’s a cost to put chemicals is a cost to treat. With the membrane filtration, it’s been more than five years without dumping the solution.

We understand that it recovers like 98% of the cleaner in the future oil that you don’t need. This changes the cost a lot. That’s why there are a lot of variables that we can put on the equation. That’s why I ask listeners with this problem that if you’re looking for the solution, we’re more than happy to jump in and evaluate one system or another and compare costs for what you have.

Doug Glenn: Does that membrane filtration system you’re talking about work on both solvent and water based?

Fernando Carminholi: No, normally the solvent has the distillation process to separate the solvent, the water, and the oil.

The main drain will work only on the water based and when you use product that will emulsify the oil. And emulsifying means the cleaner is able to mix the oil and the water like you see in milk when you have 2% of fat.

Doug Glenn: All right. Well, Fernando, I really appreciate your time and your being here.

Fernando Carminholi: Thank you for this opportunity. I hope that all the subscribers understand a little bit more clearly how important the cleaning process is before the heat treat.

About The Guest

Fernando Carminholi
Business Development Manager
Hubbard-Hall

Fernando Carminholi is the business development manager at Hubbard-Hall, a six-generation family business that develops, services, and supplies specialty chemicals for ferrous and non-ferrous metals. A chemical engineer graduate from E.S.P.M. in Sao Paulo, Brazil, he oversees the company’s distribution channels and business development team. Fernando has extensive experience in the chemical specialty products industry for surface finishing, focusing on industrial parts cleaning, metal pre-treatment, and functional electroplating.

Contact Fernando at fcarminholi@hubbardhall.com.


Search Heat Treat Equipment And Service Providers On Heat Treat Buyers Guide.Com


Heat Treat Radio #119: Solvent vs. Aqueous Cleaning: Choosing the Best Method for Your Process Read More »

Heat Treat Radio #118: Saving Dollars with Ceramic Fiber Insulation

In this Heat Treat Radio episode, Mark Rhoa, Jr. from Chiz Bros, a company specializing in ceramic fiber products, discusses insulation with host Doug Glenn. Mark focuses on the benefits of ceramic fiber in industrial applications. The conversation covers decarbonization, the importance of insulation and thermal shock resistance, the shift to electrically heated modules, and practical maintenance tips for ceramic fiber-insulated furnaces.

Below, you can watch the video, listen to the podcast by clicking on the audio play button, or read an edited transcript.



The following transcript has been edited for your reading enjoyment.

Introduction (00:30) 

Doug Glenn: I want to welcome our guest today: Mark Rhoa Jr. from Elizabeth, Pennsylvania, near Pittsburgh. Mark’s been involved with the industry for quite a while with Chiz Bros, our sponsor for today. Mark is also a Heat Treat Today 40 Under 40 honoree from the Class of 2021. And, Mark, could you tell me who started your company — your dad or your dad and his brother? I don’t know the history that well.

Mark Rhoa: My dad actually joined the company in ‘97, but when he joined, Chiz Bros. had been around for a good 30 years or so. It was started by the Chiz brothers originally: Al, Ray, and John Chiz. As they got older and some of them moved on from the company to retire, my dad took over the company in 2014, and that’s when I came on board.

I’ve been here about ten years. And Ray Chiz Jr. just recently retired; he is one of the original owners’ sons who was working here running our warehouse. He’s the last with the Chiz name to work here. We say that the Chiz haircut is kind of what I’ve got going on. You can know by the haircut there’s a lot of Chiz’s still working here, and you might even be an honorary.

Doug Glenn: I can be an honorary, for sure. I don’t have enough on the side.

Chiz has been around for 50 some years doing specialty solutions for refractory applications in the metals, power, glass, and ceramics industries. And you guys deal with multinational companies as well as the small Ma and Pa shop furnace manufacturers or heat treaters/thermal processors, a pretty good mix. You’ve got great customer service, reasonable pricing, and quick delivery. And I know you and I have talked about how you guys pride yourselves on having a lot of stuff in stock. And finally, you guys have your Pittsburgh location and are also in Detroit, which is a relatively new addition, right?

Mark Rhoa: Yeah, about two years ago we opened up a Detroit warehouse. We’ve always had some good clients up that way. You’ve got to have some boots on the ground to be super effective. I say to get the easy orders you’ve got to have the stuff on the ground to get the hard orders, which are the phone calls at 5 o’clock on a Friday saying, “Hey, we need to pick this up because the furnace is down.” And we didn’t have that opportunity to improve our customer service up there before opening that location.

We try to punch above our weight to compete with the big guys on pricing. We make sure we’re always still answering the phone.

Doug Glenn: It makes a huge difference when you’ve actually got people answering the phone.

My understanding is that you provide castables, fibers, brick, etc. But today we want to hone in a little bit on ceramic fiber.

Mark Rhoa: Ceramic fiber is the big portion of our business. We’re one of the biggest Unifrax (Alkegen) ceramic fiber distributors in the country. So, a lot of what we do is being driven by ceramic fiber products we supply. We still can supply castables, bricks, and everything in between. But ceramic fiber drives the ship for us.

What Is Ceramic Fiber? (04:58)

Doug Glenn: Let’s talk about that. Most of our listeners are folks with their own in-house heat treat. But let’s assume we’ve got some people watching that don’t know some basics.

Tell us about ceramic fiber: What is it? How is it made? What are we using it for?

Mark Rhoa: I describe it to people who may not know much about it by comparing it to the Pink Panther insulation that people may recognize up in their roof or in their walls. Ceramic fiber is white, but picture that insulation for 2300°F. That’s what ceramic fiber is, and it’s a form that we sell the most of right now.

Ceramic fiber

You can take that and cut gaskets out of it. You can form it into hard boards through a vacuum forming process. You can take it folded into what we call ceramic fiber modules; your furnace probably has modules in it if it’s a traditional gas-fired or electric furnace. Ceramic fiber products typically aren’t used on the vacuum side of things. People with all vacuum furnaces are probably not going to be using ceramic fiber. There are cloths that are ceramic fiber based as well. There’s a bunch of other ways it’s used.

Ceramic fiber is made of a blown, spun glass. Essentially what you’re doing is dropping the liquid aluminum silica mixture, and it gets blown or blown and spun at super high temperatures. I’m not going to get into the details of the differences there, but whether the stream is blown or is spun on wheels will determine the tensile strength of blanket.

In the grand scheme of things, what you’re doing is collecting all that fiber and getting it onto a mechanism that’s moving along a conveyor belt. Then it’s getting needled from each side to interlock the fibers to make a 26” wide blanket. It’s going to be trimmed off an inch when it goes through, and at the end you have a 24” wide x 1” thick, 8-pound density roll coming out.

Those densities can vary based on how much fiber is going into it. It’s pounds per cubic foot. But when you’re using a 1” thick piece, it’s divided by twelve from a weight standpoint. The fiber you’re needling in there determines the density.

And there are slightly different chemistries for 2300°F, 2600°F, and the most expensive would be 3000°F polycrystalline. The process to make that is a little bit different, too.

But most people are probably more interested in what we’re doing with it. What’s the Chris Farley line in Tommy Boy? We’ll keep it PG, but “take a butcher’s word for it” — take our word for it; it’s made the right way.

Now we can get into how it’s actually used.

Doug Glenn: It’s basically like insulation in your house, like you said. That’s probably the best description of it for people that need to know. But it can obviously go to a much higher temperature.

In an industrial setting, why would you use fiber versus a castable or brick?

Why Fiber? (08:28)

Mark Rhoa: Ceramic fiber is a great insulator. We’ll probably get into why a better insulator is important for decarbonization efforts and things like that.

It’s certainly a better insulator than castables, easy to install, and easy to use. The main reason it’s preferred is for its insulating value and ability to have varying temperature ranges, which you can certainly do with castables and brick.

But to put brick in a wall 12” thick, for argument’s sake, you will need four layers of 3” brick on there. With ceramic fiber, you can take one 12” x 12” module, shoot it onto the shell, attach it, and be good to go from there.

The main thing would be longevity and stuff like thermal shock value. One of the things you have to worry about with castables and brick — maybe not as much with IFB but standard brick — is the heat cycling. Heat treat furnaces are a great example of that.

That door is opening up a lot, so the air is coming in there. People probably see it in their furnaces. The castable is going to want to crack because it’s not designed for thermal shock like ceramic fiber is.

There are certainly applications that you wouldn’t want to use ceramic fiber for. If you’re looking at a traditional heat treat furnace, it depends on how the load is supported: If the floor is the refractory, it is actually supporting the load, and you’re going to want some sort of brick, some sort of castable. Fiber is going to be soft, compressed, and get beat up. You can’t necessarily put it everywhere, but there are areas where it may be up for debate on.

You can use a brick or you can use fiber in the wall. Traditionally, you’re going to use fiber for the insulated value, thermal shock value, installation, and weight; it’s a lot lighter.

A lot of heat treating furnaces are small compared to the massive furnaces in steel melting. They’re going to ship heat treating furnaces. With ceramic fiber, a 12” x 12” fiber module, 12” thick, weighing roughly 12–14 lbs. is 5–10x lighter than brick or castable.

Repairability (10:51)

Doug Glenn: How about addressing the repairability issues between castable and brick and fiber?

Mark Rhoa: Fiber, especially if you’re getting into higher temperatures, can have some shrinkage to it. But you’re able to repair fiber a lot easier. If you wreck a little bit of fiber, you can get in there and get it repaired quickly. With a brick or castable everything’s tied together as either a monolithic piece or a bunch of bricks that are connected, it can start to become a house of cards scenario where you pull and one goes down then everything goes down.

Doug Glenn: It’s like a Jenga game. You pull that brick out on the bottom and what happens?

Figure 2. “You don’t want to pull out the wrong brick.”

Mark Rhoa: Yeah, you don’t want to pull the wrong brick.

Doug Glenn: You already mentioned the temperature ranges we’re talking about. The standard bottom temperature is 2300°F; the fibers are good up to 2300°F. Then you’ve got 2600°F and then 3000°F. Is that roughly the breakdown when you’re looking at fibers?

Mark Rhoa: I don’t know why they ended up doing this, but for 2300°F ceramic fiber, realistically you only want to use it to 2150°F. That goes along with the shrinkage curve of it. I forget the exact number, but I think it’s like in 24 hours, you get less than 3% shrinkage. Typically, the rule of thumb is that you don’t want to use that full temperature range; you want to give yourself 150°F of cushion to be safe. It will still have shrinkage after that up to that temperature.

I don’t know who ever thought of that; it was probably some genius marketing guy to get a little extra.

Fiber Shrinkage (12:57)

Doug Glenn: You’ve mentioned shrinkage a couple different times. Why does that happen with ceramic fiber? And how does that impact installation?

Mark Rhoa: When ceramic fiber hits its operating temperatures, it shrinks up. On the chemistry side, I don’t have an answer there. But we factor in compression to help alleviate when something shrinks. It’s already pushing out against something. It still keeps its resiliency (it wants to pop back out), and that’s factored into every design. 

If you’re doing 12” modules, you’ll have a batten strip between them. That makes up for some of the shrinkage that may come where there’s not compression. Any sort of design we would do, or probably anyone would do, is going to factor in shrinkage. You don’t want to just put something in there, and when it shrinks, it leaves a gap. You want to make sure you have something in there that’s going to fill that gap; and that’s typically for modules.

Now if you’re getting to a low temperature, we’re talking about a furnace at 1200°F, you’re not going to have to worry about shrinkage. Even in some of those furnaces, you’ll see designs we call wallpaper — a pin’s exposed and you’re layering on top of it. You’re just kind of overlapping gaps, but you’re not going to have any shrinkage there, so you don’t really have to worry.

Figure 3. Avoiding gaps when shrinkage occurs

Doug Glenn: There is one question I did want to ask you when we were talking about the different temperature ranges of 2300°F, 2600°F, and 3000°F. Are the chemistries between those different?

Mark Rhoa: They’re all alumina silica based. 2300°F is like 50% alumina and 40% silica. They’ll typically inject some zirconia in it, maybe around 15% zirconia. That gives it the extra boost. Alumina is what drops down.

We don’t want to get into every example, but it does have a lower aluminum content. Sometimes in aluminum melting you can get some flexing because there’s zirconia in there, so you need to know the exact application.

And then the polycrystalline, what people call the 3000°F, would be 72% alumina. And that’s made in a calcined process. The 72% alumina is the key factor.

You can also have super high aluminum blankets. Saffil® is the typical brand name. And that’s a 95% plus alumina. That’s for high hydrogen atmospheres, stuff where there’s bad attacking, bad off gassing. The alumina is usually more resilient to that. Some aerospace applications have that stuff spected in for effectiveness and also because they probably have government money. Why not pay for the highest quality, most expensive thing, right?

Electric Element Modules (18:32)

Doug Glenn: You mentioned modules before, but I want to take a little bit of a different angle. The modules you were talking about have no type of heating element in them. They’re just simply the insulating modules that you put on the side of the wall, side by side, maybe alternating the orientation. But what I want to talk about are electric element modules. Can you describe what those are and why you are using them? And maybe hit on the decarbonization or electrification element of those?

Mark Rhoa: Traditional fiber modules are used in a gas furnace, even an electric furnace that may be heated by glow bars or radiant tubes or something like that. That’s going to have a similar penetration there.

One of the systems we call our ELE system. I’d say in the last two years we’ve probably had as many inquiries or conversations about going to these electrically heated modules than we have in the past 5–10 years combined. A lot of that has to do with companies wanting to get away from gas, or they’ve got pressures for different environmental or cost saving reasons.

What we’re doing with that is hanging the elements on the ceramic fiber module. And when they show the pictures of this one, there’ll be one in there. But that allows us to do a modular system where they can get a lot of power on those walls, and it lets us keep a lot of the same insulating value from using modules without having to use brick or a super heavy element in the sidewalls for support.

Electric Element Modules

When someone says we’re putting this many BTUs of gas; here’s the load, size, weight. We do the electric calculations to see how many kilowatts of power we need to pump into this furnace and elements in order to heat something up just like you would do with gas.

And rest assured, someone a lot smarter than me does those calculations. I’m just a pretty face that gets to sell them. But this is something that we’re seeing a lot of. There’s a big push coming from the government and boards of directors.

Doug Glenn: It’s going to help companies reduce their carbon footprint if that is their desire.

I have a question for you about those and specifically about installation. If every module needs a power source, do you have to punch a hole in the furnace wall for every module, or can you interlink them and only have one power source at the end of the chain?

Mark Rhoa: Good question. I didn’t do a good job describing that, but the modules will still go in just like a regular module. They actually have an extra set of ceramic tubes in them. When we do our design, we know where the elements are going to be hung.

If you have a 10-foot wall, you’re not going to have ten 1-foot pieces of element. You’re going to have an eight foot string of elements along that wall, and they will be hooked into the loops. One end of the hook will go on a loop, the other end will go on the ceramic tube that’s inside the module.

If you have a 12’ x 12’ high wall, and you may have a 10’ element in there, you’re probably only going to have four penetrations, maybe more. It’s not going to look like Swiss cheese. They’re going to be linked together.

These are all based on the number of zones in a furnace, too. Some super high aerospace applications are going to have everything super fine tuned just like it is with burners. If you think about how certain applications require way more precision and control over burners, the same thing can be true for these elements, too. The more precision and control you need, the more complicated it’s going to be just like it is with burners.

Before you hang the elements, you could look in that furnace and it would look just the same as a regular gas-fired furnace without the burners. Then you start hooking the elements on the walls. And the pictures of it are helpful.

If anyone has seen Home Alone, he goes into his basement and his furnace is shooting out all the flames. If you walk into a plant and can see that, getting that to seal will prevent heat from leaving.

Mark Rhoa

Furnace Doors (23:52)

Doug Glenn: When I think about ceramic fiber (which you don’t often see it inside a furnace if the door is closed), but a lot of times you’ll see it jammed in around the doors. To me it doesn’t look like that’s the way it’s supposed to be. So, doors are an issue, right? Can ceramics help with that?

Mark Rhoa: In heat treating furnaces, the temperatures aren’t totally crazy like forging furnaces where there’s a lot of shrinkage so they’re replacing it all the time. In heat treat, the temperature is lower. The main wear and tear items we see when we’re working on a repair with a client are around the doors because they’re getting the mechanical abuse of constantly changing. In some of the decarbonization talks I’ve attended and given at trade shows, we’re really looking at ways to save heat. Just making sure your door is sealed properly can do wonders.

If anyone has seen Home Alone, he goes into his basement and his furnace is shooting out all the flames. If you walk into a plant and can see that, getting that to seal will prevent heat from leaving.

You hear all these decarbonization talks, you see all these millions of dollars being thrown around, and, really, you can make a huge difference on a shoestring budget by simply making sure your door is sealing the way it’s supposed to seal.

If you can see the heat coming out, it’s like dollars flying out of your furnace on a game show. You’d have people lined up for that every day of the week.

So you hit the nail right on the head there. A really small, easy way to make a calculated decarbonization effort is making sure you have a door plan or you’re changing it.

It’s the same thing with tuning burners. Little tunes to a burner can save tons of gas and tons of CO2.

Figure 5. Heat leakage from doors needing maintenance

Doug Glenn: Making sure you’re maintaining good flame curtains on a continuous furnace, all that stuff just keeps the heat from coming out.

Did I see correctly that you guys do door repairs?

Mark Rhoa: We’ll do door repairs in our own shop. If someone ships a door to us, we’ll do the realigns there. About 20 years ago, we stopped having our outside contracting arm. Now we’re not doing any of the fieldwork. But we do realign doors in our shop.

Fiber is pretty easy to work with. Door perimeters are something that can easily be done by someone’s own maintenance crew. Maybe they’ll need one of our sales guys there making sure they do it right the first couple times. But it’s not a hard thing to do. If you have a 12 inch module perimeter, switch those 40 modules out once a year and you’ve got fresh gas savings.

Ceramic Maintenance (27:07)

Doug Glenn: Let’s shift gears a bit and talk about typical maintenance of ceramic-insulated furnace. What do we need to be careful about? Any tips you can offer?

Mark Rhoa: There’s another really affordable thing you can do. You can probably sometimes see this if you have a hot spot where paint’s chipping off or melting or if you have a temperature gun you can find those hot spots. If you see heat on the outside, then you’re typically going to see some sort of crack or gap on the inside. Make sure you have scheduled maintenance downtime with your furnace and stuff in any of those cracks.

If you’ve got a really big furnace or a continuous furnace, roller hearth, furnace type thing, the roll seals are some of the areas where you’re going to end up losing a lot of heat because there’s more wear and tear there. There’s just more opportunity for expansion and contraction.

We do have ceramic pumpable products. We call it liquid ceramic fiber for when there’s a hot spot on a furnace, it’s a big one, and you can’t get in there, you can drill a little hole on it, pump it in from the backside, and fill that up. You don’t want to start making your furnace Swiss cheese and poking holes.

It can be a quick stopgap. If you can’t get inside the furnace, fill it in from the backside, too. Because you don’t want those hot spots to grow and cause problems. You don’t want them to get to the hardware.

Then you may have a module where the hardware gets too hot in the backside and the module ends up falling in. That’s one scenario. You can get out ahead of it by filling some of those gaps.

For a refractory on the hearth, too, if you don’t want to replace a hearth you can find a refractory contractor to come in and (if you have a big furnace) spray gunite over the hearth to fix any gaps or cracks.

Doug Glenn: That’s more for castable, though?

Mark Rhoa: Yeah. On the fiber side of things, you’re looking for hot spots.

Doug Glenn: The takeaway is to make sure you’re taking regular thermal imaging of your shell of the furnace. If you’re noticing some hot spots, it’s time to investigate.

Mark Rhoa: If you have a lot of furnaces, you can get a thermal imaging gun for a couple hundred bucks and really [keep an eye out].

An even bigger deal are the doors. It will blow your mind if you look at the temperatures on a fresh door seal versus an old one. Have a temperature gun to justify to your bosses. “Hey, we realigned this, and it is 150°F. This time last year it was 250°F–350°F degrees.” Common sense can tell you we’re losing more heat when it’s like that.

Concerns with Free Floating Fiber (30:20)

Doug Glenn: Can you address the concern that some furnace users have regarding free floating fiber, especially in furnaces where there’s high velocity airflow?

Mark Rhoa: Talking about the benefits of fiber versus brick and castable, one of the benefits of the hard refractory is it does better with high velocities. Patriot furnaces may have a fan in there. Typically, they’re not getting high enough where we need to worry. You can put coatings on the fiber or rigid dyes or things like that to harden them.

But from a health and safety perspective, anytime you’re working with fiber you want to make sure you’re wearing a mask. They have warning labels on them. It’s not like it was back in the day. I’m not allowed to say the “a” word [asbestos]. So there are not worries like that anymore, either. But refractory ceramic fiber still does have a warning label on it.

We do have body size soluble fiber. Alkaline earth silica (AES), non RCF fiber, a bunch of fancy names, are more prevalent in Europe because of their rules. California’s got a lot of rules, too….

But we do supply that as well. It doesn’t have any sort of warning labels on it.

Obviously, when you’re working with it, you want to wear a mask because dust in general isn’t good. But it’s naturally soluble for your body.

It’s not quite as strong. It can have more shrinkage at lower temperatures. But it’s best to talk with somebody and understand what the right product is to use. Things can be a little worse, but there is a slight move in the direction of body soluble fiber because there are no warning labels on it. But it’s not drastic.

Some of the similar concerns foundries have is with sand and airborne silica now. Technically, I guess going to the beach we’d have airborne silica, too. There’s justification to taking those precautions, but it’s certainly not all doom and gloom.

The ceramic fiber is essentially little glass beads, like a tadpole head and then there’s a fiber tail that interlocks.

Mark Rhoa

Doug Glenn: What I heard wasn’t so much a human safety issue. It was the use of ceramic blankets inside of an aluminum annealing furnace: If the fibers got airborne, they would come to rest on the coils and mess up the strip going through. And then you have contaminated coil or it’s marked.

Mark Rhoa: The issue with that is the shot on the fibers. The ceramic fiber is essentially little glass beads, like a tadpole head and then there’s a fiber tail that interlocks.

Fiber has come a long way. The shot content is way lower than it used to be. But it’s certainly a concern if that gets on a coil and then it goes through the rolling mill and you make a small dent in all the glass … yeah.

A lot of different things can be done for that. People put up cladding; people rigidize it to lock the fiber in.

There are definitely concerns for all the applications. Big aluminum homogenizing furnaces may have that. Traditional, smaller batch annealing furnaces may not.

It would be the same thing if a little piece of brick chipped off onto [indiscernible]. The worry with some of the fiber stuff is it’s obviously a lot smaller so you don’t get to see it.

Doug Glenn: It’s a lot more conducive. You can imagine the difference between a brick being hit with high velocity air and a fiber, you would just see the degradation of the fiber. A fiber ceramic blanket would go down quicker.

Induction at Chiz (35:20)

I have one other question for you about Chiz. Your company was one of our sponsors at our recent Heat Treat Boot Camp, and I was surprised when you had an induction coil on your table. If you don’t mind, address what it is Chiz is doing in the induction area?

Mark Rhoa: We were using the company down the road from us, Advanced Materials Science (AMS), to machine some of our fiber boards and bricks that were a little too complicated for what we had in-house at the time. They have some really good CNC equipment up there. The guy who owned AMS was looking to sell off that branch of his business. We had been one of his bigger clients, and we came to an agreement to it; it’s still out of the same building, same equipment, same guys that are doing all the good work.

We started getting in there and saw a lot of the induction heating equipment on the client list — a lot of those electrical plastics, high temperature plastics, electrical marinite and transite boards, which we got into a little bit in the Chiz Brothers world but didn’t fully dive into it because the temperatures are a little bit lower than what we’re dealing with on the ceramic fiber side of things.

It’s been really good for us. They’ve got great machining capabilities down there to machine some of these complex parts out of NEMA G10 and marinite and transite and all these terms that were relatively new to me when we bought them.

It’s really helped us at some of these trade shows because three types of furnace guys walk by: the gas-fired guy, he’s my best friend; the induction guy used to be like, “There’s not that much we can do with you.” Now, we can do a lot with them.

And then I’m still trying to figure out how I can be happy when the vacuum furnace guy walks by. That will be a different battle for a different day. I’m not trying to get into the graphite felt world. I probably just can’t be friends with everybody.

But it’s been good to get into the induction industry. It’s something that we’ve been growing over the last year or two because we hadn’t been engaged with people quite as much as we had. 

Doug Glenn: Well, we’ll look for opportunities for you to be friends with the vacuum people. One thing I know from experience, Mark, you could be friends with anybody. I’m sure you can work it.

Mark Rhoa: I’ll try my best.

Doug Glenn: You’re doing good.

Thanks so much. I appreciate your time and appreciate you being here.

Mark Rhoa: Look forward to seeing you at the next event. For anyone watching, Heat Treat Boot Camp was great. Whether you’re a supplier or heat treater, it’s a good group of people bouncing ideas. It’s a crash course on a hundred different things in two days. I was there to sell stuff, but I learned stuff, too, which was an added bonus. I’d recommend it to anyone watching. It’s a good way to force yourself to get out of the office. I will definitely be back.

About The Guest

Mark Rhoa
Vice President
Chiz Bros
Eleanor Rhoa, daughter

In the heat treat industry, Mark handles Chiz Bros‘ relationships with various end-use customers as well as furnace manufacturers. Given the critical need for energy efficiency and uniform temperature throughout the heating process, Mark has been able to develop custom refractory and insulation solutions for customers to meet their complex needs. Through participation in the ASM’s Heat Treat Show, MTI’s Furnaces North America, Heat Treat Today’s Heat Treat Boot Camp, and IHEA’s Decarbonization SUMMIT, Mark has been supportive of the industry, but more importantly, has helped countless customers improve their thermal efficiency and profitability. Mark was recognized in Heat Treat Today 40 Under 40 Class of 2021.

Contact Mark at mrhoajr@chizbros.com.


Search Heat Treat Equipment And Service Providers On Heat Treat Buyers Guide.Com


Heat Treat Radio #118: Saving Dollars with Ceramic Fiber Insulation Read More »