CARBURIZING

ThermTech Expands Heat-Treat Furnace Line to Support Oil & Gas Industry

ThermTech, based in Waukesha, WI, recently added a batch integral quench furnace to their atmosphere heat-treat furnace line. The expansion is in response to an increase in demand for carburizing, carbonitriding, and neutral hardening services from their oil & gas and heavy equipment industry clients.  ThermTech acquired the ATLAS furnace from Ipsen USA, adding to existing atmosphere furnace and ancillary equipment already in operation.

ThermTech Expands Heat-Treat Furnace Line to Support Oil & Gas Industry Read More »

Carbon Sensor Troubleshooting

Jim Oakes, Super Systems, Carbon Sensor Troubleshooting, Stephen Thompson

by Stephen Thompson – President – Super Systems, Inc.

There are several key components in all atmosphere control systems. When a difficulty arises, it is important to identify the cause with minimum effort and expended time. The procedure that follows is designed to aid in that process.

INTRODUCTION

The starting point for any troubleshooting procedure is to properly identify the symptom that necessitates it. The cause of the symptom can often be elicited by answering some preliminary questions. Is this a startup problem, or has the system been operating under control? If this is a startup problem, it is necessary to establish that all system components have been properly connected and configured for the application. If the system has been operating properly and there has been either a gradual or sudden change in the control performance, it may conceivably be a problem with the probe. In order to establish the correct performance of the carbon sensor, resist the temptation to remove the sensor from the furnace. All of the tests outlined here must be done while the sensor is located in the furnace, at temperature, and exposed to a reducing atmosphere. This procedure can be performed on the SSi Gold Probe and on most other manufacturers’ sensors. We strongly recommend that you call us at 800-666-4330 before you remove the probe.

NOTE: IF YOU HAVE ALREADY REPLACED THE PROBE AND THE PROBLEM PERSISTS…..THE PROBE MAY NOT BE THE PROBLEM!

PROCEDURE

Does a shim stock analysis, a 3-gas analysis (SSi PGA3000) or a dew point analysis (SSi DP2000) verify the indicated value from the probe? If the values are close to the same, the problem is not likely the Gold Probe. If the values are not similar, continue with the following steps:

  1. Verify that both mV and t/c cables between the sensor and the controller are clean and connected firmly to the Gold Probe and controller terminals. Verify polarity.
  2. Verify that the reference air supply is connected to the reference air fitting. This will be the fitting closest to you when you face the probe. It has been found that on occasion the reference air has been connected in error to the burn off fitting, causing low readings.
  3. Check that the reference air is flowing. Disconnect the air supply at the probe and submerge it in a cup of water. Bubbles verify the flow.
  4. Verify that no air is flowing into the burn off fitting by submerging the burn off tubing in a cup of water. (Flow can occur if the burn off air pump is subject to external vibration.)
  5. Leak test- this test can detect a cracked or broken substrate in your Gold Probe. Verify that reference air is flowing at 0.5 to 2.0 scfh. Turn off the reference air for one minute and read the Gold Probe output millivolts. Turn the reference air back on and note the change in mV. It should not display more than a 5 mV increase.
  6. Is the controller COF set to the proper value? This factor is referred to by other descriptions such as Process Factor, Furnace Factor, CO Factor, Circulation Factor, Calibration Factor, etc. The factor may require adjustment to eliminate any offset or discrepancy between the indicated carbon potential and the actual achieved result in the work pieces or shim stock.
  7. Do the sensor temperature and MV output as measured by an independent digital calibrator agree with the indicated values on the controller with one sensor and one t/c lead disconnected? If not, there is most likely a controller calibration problem or a cable problem.
  8. Does the Gold Probe mV signal return to within 1mV of it’s original value in 1 minute as measured by a digital VOM after it has been shorted for 5 seconds? If it does not, go to step 10.
  9. Probe impedance (resistance) test-this is one of several electrical tests that determine the electrical integrity and reliability of the Gold Probe. Some contemporary controllers can perform it. If yours does not, conduct this simple test: at process temperature, disconnect the controller cable at the Gold Probe mV output and measure the mV value with a VOM. Then shunt the signal with a 100 kilohm resistor. After 10 seconds, read the new mV value, divide the original value by the new value, subtract 1 from the result and multiply by the value of the shunt resistor (=100K). The calculated value is the sensor resistance in kilohms, which should be less than 25 kilohms.
  10. If the problem is not corrected by probe and/or furnace burnout as described in the Gold Probe Manual and your system manual, and the problem is a faulty probe, contact SSi at (800)666-4330 and describe your problem to our technician. You may then request a Returned Material Authorization for repair or replacement of your Gold Probe.
  11. WARNING- even though you suspect a faulty sensor, DO NOT remove your Gold Probe from a hot furnace at a rate faster than 2 inches per minute. Cool the sensor on an insulating medium to avoid thermal shock. This will prevent damage that is expensive to repair.

Author information:
Stephen Thompson
Super Systems Inc.
7205 Edington Drive, Cincinnati,  OH 45249
Phone: 513-772-0060
Fax: 513-772-9466
www.supersystems.com

Carbon Sensor Troubleshooting Read More »

Majority of Heat Treatment Done In-House at SKF — New Equipment Purchased

Ipsen recently installed both atmosphere and vacuum heat-treating systems at SKF’s state-of-the-art manufacturing facility in St. Louis, Missouri. With the relocation of their existing facility to a new location, SKF continues to focus on enhancing the quality, efficiency and overall effectiveness of their heat-treating equipment. Among this new Ipsen equipment was a complete ATLAS atmosphere heat-treating system, including two ATLAS integral quench batch furnaces and ancillary equipment – washer, temper, endo generator, loader/unloader and a feed-in/feed-out station. SKF also purchased a TITAN® vacuum heat-treating system to round out their production capabilities.

Heat-treating is considered a core competency at SKF, and this new equipment will allow them to bring the majority of heat treatment in-house and efficiently handle the increase they’ve seen in production demands and volume of parts. Reflecting on the equipment purchased and what appealed to SKF, Bryan Stanford said, “Initially, I would say it was the general purposefulness of these Ipsen products that appealed to us. We run a very large variety of parts and batch quantities here. A custom solution designed to run tens of thousands of the same parts was not going to work for us. We wanted a low-cost, off-the-shelf-type solution that would allow us the flexibility we required – which is what the ATLAS and TITAN delivered. Now after having performed some pre-training, I would say what stands out the most is the ease of use and control of the equipment.”

The ATLAS batch furnaces feature a 24″ W x 36″ D x 30″ H (610 mm x 910 mm x 760 mm) load size with an 1,100-pound (500 kg) load capacity. They also operate at temperatures of 1,400 °F to 1,800 °F (750 °C to 980 °C) and have a quench oil capacity of 1,030 gallons (3,900 L). The TITAN vacuum furnace features an 18″ W x 24″ D x 18″ H (455 mm x 610 mm x 455 mm) load size with a 1,000-pound (454 kg) load capacity. It operates at temperatures of 1,000 °F to 2,400 °F (538 °C to 1,316 °C). Overall, this Ipsen equipment will be used for carburizing, carbonitriding, brazing and annealing and will process a wide variety of parts that support SKF’s Lubrication Business Unit.

Majority of Heat Treatment Done In-House at SKF — New Equipment Purchased Read More »

Heat Treatment and Wicked Problems

BOTW-50w  Source:  Linked In – Peter Sherwin

“I am wide awake on a late night flight from Kolkata to Delhi (India) so I pick up my phone to continue reading “Design to Grow – How Coca Cola learned to combine scale and agility.” I happened on the chapter discussing wicked problems – with sustainability of water use being one of Coke’s wicked problem (basically a wicked problem is one that is ill-defined, has many uncontrollable variables and has no so-called right or optimal solutions).

Having spent the week traveling around India and visiting customers with typical heat treat problems and seeing and hearing about and presenting the latest technology solutions in Heat Treat – I have come to the conclusion Heat Treatment is itself a wicked problem.”

Read More:  Peter Sherwin – Eurotherm – Linked IN

Heat Treatment and Wicked Problems Read More »

Enhancing Energy Efficiency of Thermochemical Vacuum-Processes and Systems

BOTW-50w  Source:  Heat Processing

“The energy optimization of thermoprocessing equipment is of great ecological and economical importance. Thermoprocessing equipment consumes up to 40 % of the energy used in industrial applications in Germany. Therefore it is necessary to increase the energy efficiency of thermoprocessing equipment in order to meet the EU’s targets to reduce greenhouse gas emissions. In order to exploit the potential for energy savings, it is essential to analyze and optimize processes and plants as well as operating methods of electrically heated vacuum plants used in large scale production. For processes, the accelerated heating of charges through convection and higher process temperatures in diffusion-controlled thermochemical processes are a possibility. Modular vacuum systems prove to be very energy-efficient because they adapt to the changing production requirements step-by-step. An optimized insulation structure considerably reduces thermal losses. Energy management systems installed in the plant-control optimally manage the energy used for start-up and shutdown of the plants while preventing energy peak loads. The use of new CFC-fixtures also contributes to reduce the energy demand.”

Enhancing Energy Efficiency of Thermochemical Vacuum-Processes and Systems Read More »

Record Gas Quenching Speeds Achieved in Ipsen’s ARGOS Heat Treating System

KLEVE, GERMANY – Ipsen’s Global Development Team recently celebrated the first build and testing of the ARGOS heat-treating system. The ARGOS uses low-pressure carburizing (AvaC®) in combination with 20-bar nitrogen quenching to provide metallurgical properties never before seen in gas quenching systems – even those utilizing 20-bar helium quenching. One industry visitor who witnessed the test run commented, “The ARGOS is likely the fastest inert gas quench furnace in the world.”

This initial test was performed on one of the most difficult to quench vacuum carburized components: layshafts for large gears. Until now, helium gas, which is both expensive and declining in availability, was required to fully transform parts with very high cross-sectional thicknesses.

Test outcomes showed that the shafts processed in the ARGOS system with 20-bar nitrogen quenching achieved higher surface hardness and core hardness values than shafts processed in the existing vacuum heat-treating furnaces that use 20-bar helium quenching. The ARGOS heat-treating system also offers several benefits, including:

  • Flexible installation with a selectable number of carburizing, nitriding, subzero and high vacuum process chambers with a nitrogen gas and/or oil quench module
  • Excellent temperature uniformity during heating and cooling
  • Minimal and controllable distortion due to temperature homogeneity throughout the entire load and the reversible gas flow during cooling
  • Extremely high gas velocity and volume due to Ipsen’s unique cooling system design

Overall, the ARGOS furnace line represents a significant milestone in the growing trend to operate low-pressure carburizing (LPC) lines in combination with inert gas quenching.

Record Gas Quenching Speeds Achieved in Ipsen’s ARGOS Heat Treating System Read More »

Improved Materials and Enhanced Fatigue Resistance for Gear Components

BOTW-50w Source:  Thermal Processing for Gear Solutions

“When trying to improve fatigue properties, two important areas need to be addressed: improvements of material and improvements in heat treatment technology.”

Read More: Improved Materials and Enhanced Fatigue Resistance for Gear Components

Improved Materials and Enhanced Fatigue Resistance for Gear Components Read More »