Part 1 of this article by Dave Deiwert, owner and president of Tracer Gas Technologies, was published in Heat Treat Today’s November 2024 Vacuum Heat Treat print edition and online and explored finding leaks with and without a leak detector, the best equipment for leak detection, and 10 tips for finding a leak with a helium leak detector. In this week’s Technical Tuesday we bring you part 2, where Dave further addresses leak detection using a helium leak detector including modern advancements in helium leak detector technology, the best place to connect a leak detector, maintaining a leak detector, and discerning whether to repair or replace components with a leak.
This informative piece can be found in Heat Treat Today’s March 2025 Aerospace print edition.
Past Challenges in Leak Detector Operation
When I started my career in 1989, helium leak detectors required frequent maintenance, often caused by improper shutdown or power outage. Another problem with the older detectors is how easily someone can improperly disconnect the test line while it is still in test mode. These situations could cause backflow of diffusion pump oil. An improper shutdown or power loss often required a major overhaul of the leak detector before you could use it again.
If an operator or maintenance technician forgot the leak detector was still in test mode and disconnected the test line from the leak detector to the furnace, the inrush of air to the leak detector also would require a major overhaul of the leak detector. Sometimes the inrush of air would cause the filament in the mass spectrometer to burn out. Additionally, in the days of diffusion pump leak detectors, significant backflow of diffusion pump oil could enter the valve block and possibly the mass spectrometer.
Modern Advancements in Helium Leak Detectors
The first major improvement in leak detector design targeting reliability and significantly lowering the cost of ownership was replacing the diffusion pump in the detector with a turbo pump. Replacing the diffusion pump with a turbo pump in modern leak detectors allows that leak detector to get into test mode sooner at a higher crossover pressure.

In addition, the turbo pumped leak detectors are much less at risk for pressure bursts due to opening the test line while still in test mode or operating some process gas valve while the leak detector is in test mode. With diffusion pumped leak detectors, these events cause a significant maintenance event. But with a turbo pumped leak detector, most likely it will drop out of test mode but be ready to go back into it once the pressure burst event has been solved.
A third benefit of the turbo pumped leak detectors is they typically have a much better helium pumping speed during testing which helps with response time, reaching base leak rate sooner, and recovering more quickly after detecting a leak.
Lastly, leak detectors with greater helium pumping speed benefit with a greater signal-to-noise ratio.
The next major advancement in leak detector design was replacing tungsten filaments with thoria-coated iridium; today the whole leak detector industry is using yttria-coated iridium filaments. The newer fi lament materials operate at a lower temperature but the most significant benefit is how much more robust they are to pressure bursts. Tungsten filaments used in older leak detector mass spectrometer designs would “burn out,” creating an open circuit and loss of operational capability of the leak detector. My experience and that of others shows you can expect to get thousands of hours of more use from each modern filament vs. the old tungsten filaments. This development further aided the reliability and cost-effective ownership of leak detectors.
Another advancement is that modern detectors can now respond to sudden rises in test pressure. If an operator accidentally leaves the leak detector in test mode and then proceeds to disconnect the hose from the furnace, the leak detector will likely sense the sudden rise in test pressure, close the test valve, and then turn off the mass spectrometer filaments and amplifier to protect them and the turbo pump from the pressure spike. The leak detector will document the event as an alarm but soon be ready for the next test with no maintenance required.
Older technology leak detectors gave the user no status signals beyond:
- Filament on or off
- High vacuum for mass spectrometer gauge or status light
- Sight glass for the rotary vane pump
Most likely an end user with an older leak detector has to rely on the manufacturer or other third-party service company to repair or provide preventative maintenance.
Newer technology leak detectors have a full range of alarms and status messages for any issues of concern. For example:
- Filament on or off
- Filament life or condition
- Test port pressure
- High vacuum gauge
- Turbo pump controller status readings
- Error messages for any problems detected
- Next maintenance date required
- Last calibration performed
- Many other messages per the manufacturer’s manual

Maintaining an Older vs. Modern Leak Detector
An end user or OEM still using diffusion pumped leak detectors with tungsten filaments is probably overhauling their leak detector every one to two years at best, or multiple times per year at worst. Depending on how much they use it and how knowledgeable their operators are, the obsolete leak detectors are probably costing them at least several thousands of dollars per event, not to mention the time lost in production as they wait to get a leak detector working so they can find the leak in their furnace.
On the other hand, an end user or OEM with a modern helium leak detector may be fortunate enough to have their model still in production by their supplier today. They can most likely go several to many years without maintenance beyond maintaining the oil quality and level in the rotary vane pump of the leak detector.
Where To Connect the Leak Detector

Th ere has been much discussion over the years on where to connect the leak detector to a vacuum furnace. Some think that because they are leak testing a furnace they should connect the leak detector directly to the furnace. While you can do that, you are asking a leak detector — typically with an NW25 vacuum connection or some type of hose barb connector — to compete with the typically very large port of the diffusion pump; in systems without a diffusion pump, the leak detector competes with the blower. In molecular flow level of vacuum, the conductance of helium to that 1” target is significantly lower than the conductance to the port of the valve to the diffusion pump or the blower (imagine a 1” vs. a 10” connection, for example).
It is best to connect to a port near the inlet of the blower, which is typically available. You would still be using an NW25 vacuum connection or smaller hose barb fitting, but you will be sampling the flow to the blower. The recommended connections from the leak detection to the blower should all be the same as to the leak detector test port. Using smaller connectors to the leak detector diminishes conductance to the leak detector from the furnace. This, in turn, decreases the performance of the leak detector.
It is also best to have a manually operated NW25 ball valve that is permanently installed at this point, which would be closed normally with a “blank” fitting clamped to the port on that valve. This would facilitate the following recommendation that preventative maintenance leak checks be completed during long furnace processes.
How To Conduct Preventative Maintenance Leak Checks During Operation
While the furnace is under vacuum in a long furnace process, place the leak detector in test mode. While in test mode, the leak detector creates a vacuum to the closed ball valve on the furnace, as previously recommended. Next, place the leak detector momentarily in standby mode. This closes the test valve of the leak detector but does not vent the test port. Then, open the ball valve. This lets the leak detector test port gauge show the current vacuum level now that it’s connected to the furnace. Now put the leak detector back into test mode.
At this point, you are ready to spray helium at potential leak points on the furnace. While many often begin checking with the leak detector hose at the ball valve to ensure they did not create a leak during assembly, then it is best to move to the opposite side of the furnace — to the furthest point of the vacuum system of the furnace — and slowly work back to the pumps.
A common question is how much helium should you spray? People often say they were taught to adjust the helium spray so that they get one or two bubbles in a glass of water per second or to adjust the spray so that they can barely feel it on their lips or tongue. That last one makes some people nervous. Then, it is basically like playing the hot and cold game as you spray the potentially leaking points of the furnace. More information on helium spray technique can be found in part 1 of this article.
Finding a Leak
The closer you get to a leak, the larger and faster the response will be on the leak rate meter of the leak detector. To confirm that you have located a leak, repeatedly spray the point of leakage and ensure that you get the same peak leak rate display and response time with each spray at that leak point.
Earlier we mentioned that you can accomplish preventative maintenance leak checks on furnaces while in a long process. This is because helium is inert, as mentioned in part 1 of this article. Many times, operators have told me they know of a persistent leak and have not been able to repair it; as the leak is so small, they say it does not affect their product quality. Therefore, it is possible for any furnace operator to: (a) do a preventative maintenance leak check and discover a leak they did not know they had, and then (b) have the option of marking or tagging that leak to do a preemptive repair at their convenience, as opposed to discovering it aft er it degrades to the point of causing a production shut down.

To Repair or Replace?
If you find a leak in a component like a valve, fitting, or thermocouple, you must then consider if the component is something that can be repaired or needs to be replaced. Often components that can be repaired may have a repair kit available from the manufacturer. If you have a leaking door seal, for example, you may be able to clean and, if appropriate, relubricate the seal. If it is damaged or worn, then replacement would be necessary.
The only temporary repairs that come to mind are, for example, a cracked weld or substituting a failed pump with a lower performing pump. For the cracked weld, you may discover that applying some vacuum-appropriate putty or similar material may help the furnace back to approvable vacuum capability. However, a repair like this should only be considered a temporary solution with plans to repair the weld at the earliest opportunity.
For a failed pump, you may replace it with another pump that might not have the same performance but is capable of the same vacuum level. While your process time might be slower, at least you can continue producing product until appropriate repairs can be made to the failed pump or you can replace it with the same type of pump.
Importance of Leak Detection
A leak on a vacuum system introduces air, thereby affecting the quality of the product or even ability to reach the process vacuum level. To ensure the quality of heat treated parts and prevent long delays in production, it is critical that heat treat operations with vacuum furnaces are well-versed in their equipment and leak detection resources, whether they own and operate helium leak detectors or hire a manufacturer or a third-party service company to detect and repair leaks.
About The Author:

President
Tracer Gas Technologies
Dave Deiwert has over 35 years of technical experience in industrial leak detection gained from his time at Vacuum Instruments Corp., Agilent Vacuum Technologies (Varian Vacuum), Edwards Vacuum, and Pfeiffer Vacuum. He leverages this experience by providing leak detection and vacuum technology training and consulting services as the owner and president of Tracer Gas Technologies. Dave is a Heat Treat Consultant. Click here for more about Dave and other consultants Heat Treat Today consultants.
For more information: Contact Dave Deiwert at ddeiwert@tracergastechnologies.com or tracergastechnologies.com.