FEATURED NEWS

The Clean and Pure: 8 Heat Treat Tips

OCWant a free tip? Check out this read of some of the top 101 Heat Treat Tips that heat treating professionals submitted over the last three years. These handy technical words of wisdom will keep your furnaces in optimum operation and keep you in compliance. If you want more, search for “101 heat treat tips” on the website! This selection features 8 tips to make sure your operations are clean and pure.

Also, in this year’s show issue, Heat Treat Today will be sharing Heat Treat Resources you can use when you’re at the plant or on the road. Look for the digital edition of the magazine on September 13, 2021 to check it out yourself!


Oil and Water Don’t Mix

Keep water out of your oil quench. A few pounds of water at the bottom of an IQ quench tank can cause a major fire. Be hyper-vigilant that no one attempts to recycle fluids that collect on the charge car.

(Combustion Innovations)


Dirt In, Dirt Out!

Parts going into the furnace should be as clean as possible. Avoid placing parts in the furnace that contain foreign object debris (FOD). FOD on work surfaces going into the furnace will contaminate the furnace and the parts themselves. Dirty work in, dirty work out. FOD comes in many forms. Most common: oil, grease, sand in castings or grit blasting operations, and metal chips that generally originate from the manufacturing process before the parts are heat treated. It could also be FOD from the shipping process such as wood or plastic containers used to ship the parts.

(Solar Manufacturing)


Remove Particulates

Adding a strong magnetic filter in line after the main filtration system is an effective way to remove fine, metallic particulates in an aqueous quench system.

(Contour Hardening, Inc.)


Seal Away Dirt or Dusty Environments

Use a sealed enclosure or alternative cooled power controllers for dirty and dusty environments. For heavy dirt or dusty environments, a sealed cabinet with air conditioning or filters is recommended. Alternatively, select a SCR manufacturer that offers external mount or liquid cooled heatsinks to allow you to maintain a sealed environment in order to obtain maximum product life.

(Control Concepts)


Copper as a Leak Check

If maintaining dew point is a problem, and it’s suspected that either an air or water leak is causing the problem, run a piece of copper through the furnace. Air will discolor the copper; water will not.

(Super Systems, Inc.)


Oxygen Contamination Sources

A common source of oxygen contamination to vacuum furnace systems is in the inert gas delivery system. After installation of the delivery lines, as a minimum, the lines should be pressurized and then soap-bubble tested for leaks. But even better for critical applications is to attach a vacuum pump and helium leak detector to these lines with all valves securely closed, pull a good vacuum, and helium leak check the delivery line system. Helium is a much smaller molecule than oxygen and a helium-tight line is an air-tight line. Also, NEVER use quick disconnect fittings on your inert gas delivery system to pull off inert gas for other applications unless you first install tight shut-off valves before the quick disconnect. When the quick disconnect is not in use, these valves should be kept closed at all times. (Though the line is under pressure, when you open a back-fill valve to a large chamber, the line can briefly go negative pressure and pull in air through a one-way sealing quick disconnect valve.)

(Grammer Vacuum Technologies)


Container Clarity Counts!

Assure that container label wording (specifically for identifying chemical contents) matches the corresponding safety data sheets (SDS). Obvious? I have seen situations where the label wording was legible and accurate and there was a matching safety data sheet for the contents, but there was still a problem. The SDS could not be readily located, as it was filed under a chemical synonym, or it was filed under a chemical name, whereas the container displayed a brand name. A few companies label each container with (for instance) a bold number that is set within a large, colored dot. The number refers to the exact corresponding SDS.

(Rick Kaletsky, Safety Consultant)


Discolored Part—Who’s to Blame?

If your parts are coming out of the quench oil with discoloration and you are unsure if it is from the prewash, furnace, or oil quench, you can rule out the quench if the discoloration cannot be rubbed off. Check this before the part is post-washed and tempered.

Other possible causes:

  • Can be burnt oils as parts go through the quench door flame screen
  • Poor prewash
  • Furnace atmosphere inlet (particularly if it is drip methanol)

(AFC-Holcroft)


Check out these magazines to see where these tips were first featured:

 

 

 

 

 

 

 

 

The Clean and Pure: 8 Heat Treat Tips Read More »

Heat Treat Radio #61: Thermocouples 101 with Ed Valykeo, Pelican Wire (Part 1 of 3)

Heat Treat Today publisher Doug Glenn sits down with Ed Valykeo from Pelican Wire in the first of a three-part series on all-things thermocouples. This first episode covers the history, types, vocabulary, and other basics of understanding how thermocouples work.

Below, you can either listen to the podcast by clicking on the audio play button, or you can read an edited transcript.

 



The following transcript has been edited for your reading enjoyment.

Doug Glenn (DG):  Ed, why don't you take a minute, as we typically do on these interviews, to talk briefly about you and your background especially your qualifications for talking about thermocouples.

CLICK the image to access the article!

Ed Valykeo (EV):  I've actually been in the wire and cable industry for a little over 40 years now.  I actually first started in the industry as, well maybe not a grunt, but certainly I was called a “melter's helper.”  I worked at a company called Hoskins Manufacturing in Ann Arbor, Michigan where we actually melted the raw materials to make thermocouple wire, resistance wire, and a whole host of other things.  I was actually the guy that, after we got done pouring that molten metal into the molds to make the ingots, was cleaning up all the mess that happens after you pour and you're pulling those ingots.

That's really where my career started, with Hoskins.  As a matter of fact, it kind of ran in the family.  My dad retired at Hoskins with 42 years of service with Hoskins, so it was kind of a natural progression that, eventually after I got out of the service, I ended up joining Hoskins.  I was there about 18 years at Hoskins Manufacturing, again, starting out right at the bottom.  I worked my way up to becoming an associate engineer working in the R&D department.  That's where my career really started focusing a little more on thermocouples.  I enjoyed working with thermocouples.  We were developing some new products using thermocouple wire and things like that.

Ever since then, I've kind of stayed in thermocouple arena at some of the other places I've worked.  After I left Hoskins, I started working for companies that insulated wire.  So, we were taking the wire, like we made at Hoskins, and we were putting a whole host of insulations on it from ceramic braid to extruded products and things like that.  And, again, both the companies, and even the one I'm currently employed with at Pelican, but before that I was working for a company out in New Hampshire called PMC, are real similar, it's just we insulated wire.  So, we purchased the raw materials (raw wire from Hoskins or whoever) and then insulated it.

DG:  For the unbaptized in this topic, what are thermocouples, how do they work, how do they come about, and then are the modern-day thermocouples any different than the thermocouples of old?

EV:  I always start out with a little bit of history about thermocouples, whenever I'm talking about them, just to give people background.  Thermocouples were introduced in the early 1800's with the most significant developments taking place in Europe.

One of the very first gentleman that worked on it was Alessandro Volta.  You can probably recognize the name because Volta actually is the volt, today, which everybody recognizes, not just with thermocouples but, obviously, in the electrical industry too.  He basically built a couple thermopiles using metals, silver and zinc and some cloth in between them, soaking them in salt water, and discovered that it would produce a voltage.  That's kind of how it got started.  The significance of that discovery was that there is a source of steady and reliable current flow from using dissimilar metals and saltwater and things like that.

Thomas Johann Seebeck, Baltic German physicist, who, in 1822, found the relationship between heat and magnetism.

Over the years, many others have experimented with the phenomenon.  Probably the most famous, anybody that's in the thermocouple industry will hear it a lot, in 1821, Thomas [Johann] Seebeck announced that he had discovered that when two dissimilar metals were placed in a closed loop and one of those junctions was exposed to a change in temperature, electrical current was produced.  This production of the electromotive force and electromatic force is the electric current is known as "the Seebeck effect" or "Seebeck coefficient."  It was, obviously, much later, before everything was understood and correct mathematics, but Seebeck's name will always and forever be associated with the discovery of thermoelectricity and thermocouples.  Again, even to this day, even ASTM books reference Seebeck coefficient.

Some other gentlemen that we involved, again you'll recognize some of these, were Michael Faraday, Georg Ohm, Claude Pouillet, and Antoine [César] Becquerel.  It was Becquerel, actually, that suggested using Seebeck's discovery for measuring high temperatures.  He proposed the strength of the current generated was proportional to the change in temperature in exactly the principle behind the thermocouple.  We're measuring temperature, whether it's 200 degrees or 2300 degrees.  That's how the modern day thermocouple got started way back in the early 1800's.

DG:  And the modern-day thermocouples are, essentially, the same as that?  Have there been any major changes?

EV:  In reality, Type J was the first thermocouple to really be experimented with.  After Type J, then some additional thermocouple types came on board.  People experimented with other metallurgical compositions to develop different millable outputs.

DG:  Let me understand:  Type J, what that basically the first type of thermocouple that was developed?

EV:  Let me back up a little bit.  Actually, the early metal thermocouples were based on what we can call noble metals.  Noble metals are rare earth elements such as platinum, rhodium, tungsten and uranium.  The problem with the noble metals is that noble metals are much more expensive than our base metal thermocouples, or what we call base metal thermocouples, today.  Base metal thermocouples, today, typically the compositions are just a handful of elements.  You have iron, nickel, chromium, copper and things like that, which is considerably cheaper than the noble metals, the platinum and rhodium and things like that.

DG:  I want to learn this history a little bit, because it's just kind of fascinating to me.  So, the very first ones were made of noble metals, primarily. So, they would put those together and then, basically, we said, "This is great but it's way too expensive.  Can we get the same effect, if you will, (the difference in voltage, or whatever, between dissimilar metals), if we use a little less expensive metals?"

EV:  Right.

DG:  You’ve said there is a difference voltage when there's a difference in temperature.

EV:  The EMF (electromotive force) generated by the thermocouple is linear.  So, at 200 degrees, it produces this amount of voltage, at 300 degrees, it produces this much.  All the thermocouples are, basically, the same principle.  It's very linear.  That's one thing that is good about a thermocouple- the EMF output is linear.  You aren't producing a millivoltage at 200 degrees and then at 300 it goes down and then at 500 it goes back up; it's linear proportional to the temperature.

CLICK the image to access the article!

DG:  I have heard in the past, and you mentioned it here, maybe we can discuss it a little bit:  noble metal versus base metal.  Obviously, we know noble metals, you mentioned what those are.  Those are expensive; they work to do the same thing.  Base metals, though, tend to be what?  Which metals?

EV:  As I already mentioned, the nickel, chromium, copper, and others.

DG:  And those are, in fact, just less expensive, right?  Essentially, they do the same thing but they're less expensive.

EV:  Exactly.  But, there are some other differences, too, between the noble metals and the base metal thermocouples.  When you're talking noble metals, the platinum and the rhodium, and things like that, they can handle much higher temperatures than even the base metal thermocouples.

DG:  I'm going to make an assumption, but probably the vast majority of the thermocouples used in the heat treat industry are probably base metal, although, I'm sure they've got some specialized ones for high temperature, which probably jump into noble metals.

EV:  Absolutely.  A lot of the base metal thermocouples are used in the load sensors where they're putting multiple sensors in and then the oven may be controlled by a noble metal.

DG:  The different types of thermocouples.  You mentioned, and I've forgotten the letter already, that there are different types.  Was it Type J you mentioned?

EV:  Yes, Type J.

DG:  OK.  We've done a study recently asking about what's the most popular one in the heat treat industry, but I know we listed down there J, E, K, N, and T.  Can you run us through those and tell us what are the differences, and whatnot?

EV:  J, E, K, N and T are the most common noble metal thermocouples.  Obviously, you've got two dissimilar metals or, what we refer to in thermocouples, two legs of the thermocouple – the positive leg and the negative leg.  So, for instance, on a Type J thermocouple, you're using iron as a positive leg, which is basically pure iron, (there are some coatings on the iron to help against oxidation and things like that), and the other leg is a copper nickel alloy.  That makes up the two legs of the Type J thermocouple.

If we look at Type K thermocouple, the negative leg is the KN which is, basically, just high nickel with a little bit of chromium; the KP leg, or the positive, of Type K is higher content nickel chromium.  There are also some other minor elements.

With Type T, the positive leg is pure copper.  The TN leg is, again, a copper nickel alloy.  So, when we talk about Type E, what is interesting is that with the Type E thermocouple, you're actually taking the Type KP leg and matching it with the TN leg.  So, again, it's just a mismatch or some hodgepodge of some legs.

DG:  So, you're using some lingo that I'm just picking up on and I want to make sure our listener's are, as well.  You talk about a P and an N leg.  Obviously, you didn't say it, but you're talking about a positive leg and a negative leg.

EV:  Yes, I'm sorry.  KP and KN.  So it's K positive and K negative leg.

DG:  Great.  So, with the Type E, you're taking a few and switching them around and matching them up and seeing what you can come up with.

EV:  Yes, that's the E, and I already mentioned the T.  N is a relatively newcomer to the thermocouple industry.  I say new, but it's still probably 40 or 50 years, I'm not sure when it was developed.  But, again, the Type N is similar to the Type K where the KP leg is a nickel and the KN leg is nickel and some silicon.  So, it's just a little bit different composition from the Type K thermocouple.  But, there are some differences.

Some of the differences, when you're looking at the different types of thermocouples, for example, Type E has the highest EMF output of any of the thermocouples.  Your question might be, "Well, why wouldn't we just use Type E because it has the highest output?"  What the higher EMF output means is that the sensitivity is a little bit greater in the Type E thermocouple.  Then why wouldn't we use that throughout all the industries?  Well, the short answer is, a couple things:  Type E has a limited temperature range, because, again, you're using that TN leg which is copper nickel alloy and the melting point of a copper nickel alloy is much lower than a nickel chromium alloy.  So, that's some of the differences, and with all the thermocouple types, also.

Each one has their own EMF output at certain temperatures but one of the biggest considerations is, really, the environment that you're using the thermocouples in.  Type K has good oxidation resistance; Type J, not so much, because you've got a pure iron leg which is going to oxidize much faster.  That's some of the differences between the individual thermocouple types.

DG:  I assume that if there's oxidation, or any type of corrosion or anything of that sort, it's going to change the EMF, it's going to change the reading and therefore that thermocouple, out the door she goes.

EV:  Absolutely.  And there have been even some recent changes in some of the specifications that some of the heat treaters are using nowadays where they finally realize that these thermocouples do deteriorate over time and so they start limiting the amount of uses that each thermocouple can be used in, in a bunch of different applications, but heat treating mainly.

DG:  Let's pause for just a second and do a little vocabulary.  You've mentioned EMF a couple of different times.  Could we have just a brief review of that just to make sure?  Also, I've heard about millivolts.  Are those two things related?  If so, how?

EV:  EMF stands for electromotive force.  It is, basically, when two dissimilar metals are put in contact with each other, a small voltage is generated.  When we're talking about millivolts, that's exactly what we're looking at: a millivolt is 1/1000 of a volt.  It's a very small amount.  If you look at some of the millivolt outputs for some of these thermocouples, at 200 degrees, for example, you're putting out .560 of a millivolt.  So, these are small.

DG:  And you're saying that it was the Type E that has the highest millivolt of all, so the current that is produced between those dissimilar metals is the highest, but you can't always use that one because in certain temperature ranges you're going to melt one of the legs.

EV:  Exactly.

DG:  The millivolts are measured by what?  I mean, it goes into an instrument that is able to read that?  What is that instrument?

EV:  Actually, some DVMs (digital volt meters) have the capacity to measure in the millivolt range.  So, it could be as simple as a digital voltmeter.  But, in the industry, we have temperature controllers, things like that, that you hook a thermocouple up to and it measures the EMF and then it converts it into a temperature.

DG:  It will measure that millivolt and then tell us what the temperature is?

EV:  Right.  With the instrumentation nowadays, it has the formulas in its memory, or whatever, and can convert that millivolt into an actual temperature that you actually read on a meter.

DG:  We've got an EMF which is measured in a millivolt.  It's going to travel across a long wire, I assume, to some place where it's going to be read.  Let's talk about that wire a little bit.  The impact of this, whatever EMF is being created, millivolt, what about that wire?  Tell me about it and what do we need to be careful of, etc?

EV:  We're actually saving that for another podcast, but I will touch on it a little bit.  So, there are limitations on the length of the thermocouple.  There are a lot of different mindsets, but probably the one I've heard the most is no longer than 100 feet.  So, you have your thermocouple sensor and that arrangement, the configuration, can be a number of ways.  At PMC Corp. we insulate the wire.  You could just take that insulation off at the end, weld the junction there, stick it and [. . .] then run it to a meter.

But in other industries, you may have it in a ceramic tube because of the temperature it's being used at.  You have a ceramic tube with a connector at the end, you may run what we consider an extension wire from that point all the way back to your instrumentation.  Again, the general rule of thumb, is 100 feet.

DG:  Let's talk about that wire with the different types of thermocouples.  What do we need to be sensitive to?  What do we need to be careful about?

EV:  Again, temperature range is probably the first consideration, but then also the environment that it's in.  Again, each thermocouple has its limitations on the environment.  Some are good in a vacuum, other thermocouples are not good in a vacuum.  Some thermocouples are good just in air, (like Type K), but Type J is not so good.  It still can be used in air but it will oxidize faster.

Like I said, in an environment of a vacuum, some thermocouple elements will actually leech out or evaporate out and that definitely would cause a problem with the EMF output and would have an erroneous reading.  Certain acids you can use some thermocouples in, others you can't.

DG:  With all of this pyrometry stuff going around, especially the AMS2750 revision, there are a lot of places where the tightness of the tolerance on the temperature really needs to be paid attention to.  Are some thermocouples inherently tighter tolerance, where they can go down to + or –2, or less than that?

[blockquote author="Ed Valykeo, Pelican Wire" style="2"]Special limits of error is the tightest tolerance, and that's according to ASTM.  But, there are some customers and some companies that want tighter tolerance material.  So, when we talk about that, that's really a special order.  Now you have to back all the way back up to the melters that melt these elements and make the thermocouple wire.  It's on them to produce something that is a tighter tolerance. [/blockquote]

EV:  Again, that was something we were going to touch on a little bit later, maybe on another podcast, because it can be a whole category on its own.

But, yes.  If you think about in general, overall, when we're thinking about the different thermocouple types, they basically all have the same tolerances according to ASTM.  The rule of thumb, that we kind of use, is from say 200 degrees to 500 degrees, the tolerance on all thermocouples are + or - 2 degrees if you want special limits of air material.

Now, there are other tolerances.  In the thermocouple industry, you’ll here – at least calibration-wise – you'll hear special limits of error, standard limits of error and extension grade.  Special limits of error is the tightest tolerance, and that's according to ASTM.  But, there are some customers and some companies that want tighter tolerance material.  So, when we talk about that, that's really a special order.  Now you have to back all the way back up to the melters that melt these elements and make the thermocouple wire.  It's on them to produce something that is a tighter tolerance.  Once that metal is poured in that mold and it's processed down the wire, it is what it is.  When they calibrate that wire, you can't really do a lot with it to change the EMF output, per se, other than there are some heat treat operations that can, what they call, stabilize, and there are processes to oxidize thermocouple wire, and things like that, but you're pretty much stuck with EMF right from the melt.

DG:  And it's dependent on the material composition or quality of the material.

EV:  Absolutely.  In some cases, they may melt 10 melts to get 2 special limit of air thermocouple types.  I don't think it's quite that bad, bur from my early melting days, we've had to downgrade many a melt because it didn't quite meet the tolerances.

DG:  Just reviewing, we talked about the basic history, how they got started.  We talked about the difference between noble versus base metal thermocouples.  We talked about the different types.  We defined EMF, electromotive force.  We talked about millivolt a little bit.  We talked about the wire, the differences in what we need to pay attention to as far as wire, and some other considerations like temperature range, calibration tolerance and environment.

EV:  Just so you know, the only base metal thermocouples there are, at least what ASTM recognizes, are the Type J, E, K, T and N.  We covered all the base metal thermocouples.

DG:  Just out of curiosity, a noble metal thermocouple, what are those?

EV:  There is a fairly large list of those.  You've probably heard of thermocouple Type R or Type S thermocouple.  Those are all made with noble metal thermocouples.  It's not really considered a base metal, but tungsten uranium thermocouples.  Those are in more the noble metal category Type C.  There is even development of some other additional noble metals:  gold is used.  Thermocouples are made out of gold.

DG:  Those could be expensive.  Of course, some of those other metals are more expensive than gold, so, who knows?

Well, that's very interesting.  So, J, E, K, N and T are all base metal thermocouples.

I want to make sure that we give appropriate credit to your company.  We talked about the fact that you're from Pelican Wire, part of the wire expert group.  I want to make sure that our listeners know that they can go check out your website which is pelicanwire.com.  You're not obligated to do so, but would you like to give out any other information where they can get a hold of you?

EV:  Yes.  Through the Pelican website, you can certainly get a hold of me.  Our number is on the website.  It's 239-597-8555 and it goes through a central board.  If anyone wants me, they can just ask for me through the operator.

Doug Glenn <br> Publisher <br> Heat Treat Today

Doug Glenn
Publisher
Heat Treat Today

 

 

 

 

 

 

 

 

 

 

 

 

 


To find other Heat Treat Radio episodes, go to www.heattreattoday.com/radio and look in the list of Heat Treat Radio episodes listed.

 

 

Heat Treat Radio #61: Thermocouples 101 with Ed Valykeo, Pelican Wire (Part 1 of 3) Read More »

HTA Group Increases Heat Treat Capability with 2 Vacuum Furnaces

Source: SECO/WARWICK

HTD Size-PR LogoHTA Group (HTA) purchased two vacuum furnaces to augment its support for Australian defense capabilities. The equipment will provide heat treatment processes for HTA’s manufacturing customers in the region to meet defense customer and quality specifications. The project was developed in response to customer demand and market analysis identifying gaps in Australia’s advanced manufacturing industrial framework.

The two new Vector® single chamber high-pressure quench vacuum furnaces from SECO/VACUUM will go to HTA's Melbourne and Sydney commercial heat treatment facilities to provide expanded processing capabilities to support the Australian defense industry.

"HTA is the only Australian Nadcap-approved thermal processor and has had ongoing success with commercial and aerospace operations to date," commented Dr. Karen Stanton, director of Corporate and Strategy at HTA (pictured in the headline image above). "Increasing the footprint of heat treatment assets through the establishment of this capability in Melbourne and Sydney will increase the ability of defense component manufacturers to deliver projects faster and allow them direct access to a qualified local supply chain."

Norm Tucker
Director of Operations
HTA Group

"SECO/WARWICK Group has the most advanced and user-friendly vacuum furnaces on the market," added Norm Tucker, director of Operations at HTA. "But equally important to me is the way we can collaborate with their team to determine the best furnace features and capabilities to do the job. These two new Vector furnaces will be the first of their capability in Sydney and Melbourne and will be used to heat treat high strength components such as landing gear or brazing engine parts and opening up advanced processing capabilities to our new and current customers."

Piotr Zawistowski
Managing Director
SECO/VACUUM TECHNOLOGIES, USA
Source: secowarwick.com

"HTA has been very smart about how they approach their growth, measuring business opportunities through research and thoughtfulness and looking carefully at the potential upside of their investments," noted Piotr Zawistowski, managing director at SECO/VACUUM. "We are proud to be an integral partner in their planning and execution."

The addition of Vector® vacuum furnaces to HTA’s processing capabilities follows 7 other installations of SECO/WARWICK products in Brisbane and Los Angeles CA, including high-pressure gas quench vacuum furnaces, vacuum aluminum brazing furnaces, and tempering/stress relieving furnaces.

HTA Group Increases Heat Treat Capability with 2 Vacuum Furnaces Read More »

Heat Treat Training Benefits Stellantis

OCAn induction heat treat equipment supplier is offering customized, process-specific training seminars to a leading automotive part manufacturer. With the growing need for training and education among new and less experienced employees, these highly effective training strategies are growing in popularity.

This article shows how one induction heat treat equipment supplier, Inductoheat, has helped Stellantis, a leading automotive manufacturer, improve its in-house heat treat operations and further excel its technology.

This article appears in Heat Treat Today's 2021 Automotive August print edition. Go to our digital editions archive to access the entire print edition online!


Introduction

Stringent demands to dramatically minimize transmission noise in hybrid and electric vehicles (EV) as well as in modern internal combustion powered vehicles (ICE) call for innovative technologies allowing to suppress distortion of heat-treated parts, while further enhancing their metallurgical quality and performance characteristics.

Light-weighing initiatives have become essential in vehicle designs. To minimize weight and cost of automotive components, designers might choose to drill holes, reduce cross sections, make intricate transitions, cutouts, re-entrant corners, and custom shapes. In some cases, such attempts result in a component’s geometries that might be prone to cracking during heat treating or might be associated with excessive distortion. Many times, complex geometries of components are linked to intricate hardness patterns and specific requirements for magnitude and distribution of residual stresses.

To be competitive and successfully develop high performance/low distortion components, induction heat treatment users must have a clear understanding of not only principles of electromagnetic induction and associated metallurgical subtleties, but also have awareness of recent theoretical discoveries and technological breakthroughs to further advance part designs.

On multiple recent occasions, Inductoheat has been approached by automotive industry and heat treat suppliers to develop process-specific training seminars as a knowledge-sharing eff ort to give insights on various aspects associated with induction thermal technology. As a response, Inductoheat has developed several practical-oriented training seminars for the automotive industry. These seminars allow present and potential users of induction technologies to understand basic and advanced knowledge associated with electromagnetic induction and to learn novel theoretical achievements, process developments, technological breakthroughs, and practical recommendations.

Another goal in developing these technical seminars is to minimize the negative impact of a generation gap by helping young professionals involved in induction heating to better understand its subtleties and metallurgical intricacies and clarify common misconceptions and confusions existing in different publications.

Best practices and simple solutions for typical induction heating challenges, as well as do and don’t items in designing and fabricating coils are explained. The subject of induction hardening of complex geometry parts (including but not limited to gears, gear-like and shaft-like parts, raceways, camshafts, and other critical components) is also thoroughly discussed, describing inventions and innovations that have occurred in the last three to five years.

Understanding a broad spectrum of interrelated factors associated with various failure modes of heat treat components is an important step in designing new products and developing robust and sustainable processes. Aspects related to failure analysis, part longevity, process monitoring, quality assurance, and robustness of induction systems, novel semiconductor inverter technologies, as well as specifics of implementing Industry 4.0 operating strategy in induction heat treating are also addressed in these seminars. Various design concepts and advanced process recipes/protocols are analyzed to help reduce the energy consumption of induction equipment and enhance cost effectiveness.

Some people traditionally view induction heating as a standalone process or system. Presented materials clearly reveal a necessity to consider induction equipment as part of an integrated system that includes all elements (such as previous process stages and their metallurgical implications, stress analysis, load matching capabilities, and many others) that must be considered to accomplish the process goal.

Finally, Inductoheat conducts these technical video seminars free of charge, addressing specific subjects defined by a particular automotive manufacturer or heat treat supplier.

Technical Seminars for Stellantis

Inductoheat recently conducted two free technical video seminars addressing subjects selected by Stellantis that included aspects related to modern induction thermal processing for traditional ICE vehicle and EV markets.

The first seminar in April was devoted to “Troubleshooting Failures and Prevention in Induction Hardening: General Useful Remedies, Impact of Geometrical Irregularities and Improper Designs.”

In May, the second seminar focused on “Novel Developments and Prospects of Using Induction Heat Treating for Electrical Vehicles (EV).”

Both seminars had the same format: 90 minutes of oral presentations by Inductoheat’s team followed by 20 minutes of Q&A sessions. Attendees included heat treat practitioners, engineers, metallurgists, managers, and scientists involved in induction heating technologies in application to the automotive industry. There were 220 professionals from Stellantis North America registered for the first seminar alone.

Figure 1

Step-by-Step Remedies to Minimize the Probability of Abnormal Outputs

A virtually endless variety of components are routinely induction hardened for different sectors of the industry (Figure 1). Many of these components have their own “personalities” that affect the outcome of heat treatment. Troubleshooting tips and practical remedies to prevent unspecified outputs associated with induction hardening have been developed by industry experts and shared with professionals involved in induction thermal processing. This enhances the knowledge of designers of automotive components and minimizes the probability of cracking and excessive distortion in industrial practice.

Possible abnormal outputs associated with induction hardening include:

  • Inappropriate microstructures (undesirable phases or their mixtures)
  • Unacceptable hardness levels (too high or too low)
  • Inadequate hardness case depths (too deep or too shallow)
  • Hardness inconsistency/inappropriate hardness pattern (e.g., a deviation of a run-off region)
  •  Excessive grain coarsening, decarburization, oxidation, and scaling
  • Unacceptable distortion (size distortion and/or shape distortion)
  • Unfavorable transient stresses/undesirable magnitude and distribution of residual stresses
  • Crack development and propagation

There is a variety of factors that need to be considered to ensure that abnormal heat treat outputs do not occur. Those factors can be divided into four large groups: 1, 2

  • Prior microstructure and composition of incoming material
  • Parts geometry related
  • Inductor design related
  • Process protocol related

Inadequate equipment selection or unsuitable heat treat process protocols may be unfit for certain geometrical features of parts or required hardness patterns. It is difficult to overestimate the importance in having a sufficient degree of familiarity with the hardening equipment and process specifics of a particular machine under investigation. Underestimating geometrical irregularities of components (including a presence of holes, keyways, grooves, shoulders, flanges, undercuts, sharp corners, and other geometrical irregularities) by novices as well as a danger of misjudging an impact of different process factors on the outcome of heat treatment have been reviewed in these seminars. Numerous practical case studies and solutions to prevent abnormal outputs have been shared.

Figure 2. Transmission and engine components may contain multiple longitudinal (axial) and/or transverse (radial) holes, as well as angled or cross holes.

Presence of Holes on Selecting Appropriate Inductor Style and Process Protocol

It is not unusual for transmission and engine components to contain multiple longitudinal (axial) and/or transverse (radial) holes, as well as angled or cross holes (Figure 2). Induction practitioners can face certain challenges when dealing with parts containing holes. Distortion of the eddy current flow in the hole area can result in the undesirable combination of  “hot” and “cold” spots, excessive shape distortion, and unwanted metallurgical microstructures, which weakens grain structure and substantially increases brittleness and sensitivity to intergranular cracking.

It is important to carefully evaluate the imaginary eddy current flow lines in the vicinity of oil holes. Surprisingly, in many cases, a proper selection of induction hardening technique (for example, single-shot vs. scanning vs. static hardening) in combination with other factors can be essential in helping to dramatically improve heat uniformity and eliminate regions with localized grain boundary liquation that could act as crack-initiation sites.

There are several helpful practical solutions and knowhow shared with heat treaters during these seminars helping to develop robust and failure-free induction hardening processes. For example, appropriate coil copper profiling often allows dramatically reducing or eliminating hot spots in the vicinity of holes. Some of those solutions allow selectively controlling heat source distribution along the oil hole perimeter by providing preferable channels for eddy current flow. Several patented design concepts have been revealed.

It should be recognized that temperature surplus alone might not result in cracking. There are other factors that can contribute to overheating, thereby increasing crack sensitivity. Steel chemical composition is one of those factors. Steels having higher carbon contents are more prone to cracking. Besides carbon content, an unfavorable combination of alloying elements and residual impurities could promote a tendency to crack initiation; the extent depends on the amount and combination of elements present.

For example, sulfur and phosphorus amounts should be minimized to reduce steel brittleness and crack sensitivity. Sulfur reacts with iron, producing hard, brittle iron sulfides (FeS) that concentrate at grain boundaries. FeS also has a relatively low melting temperature, potentially leading to grain boundary liquation and increased sensitivity to heat surplus. FeS in carbon steels is minimized by the addition of manganese to form MnS creating a less brittle microstructure. A high level of phosphorus, copper, and tin can also weaken steel’s grain boundaries causing excessive brittleness and a tendency to crack initiation.

Impact of metallic residual elements can be differentiated based on their presence (e.g., in solid solution), precipitation specifics (for example, a capability to form inclusions such as carbides, sulfides or nitrides), as well as characteristics of formed inclusions (including amount, size, distribution, etc.), and their tendency for segregation.

It is important to keep in mind that transient stresses are primarily responsible for great majority of cracking in induction hardening. Thus, it is essential to have a clear understanding regarding the specifics of their formation. A complex stress state in the vicinity of the oil holes takes place during the heating and quenching cycles. Dynamics of a formation of transient stresses during spray quenching in the locality of the oil hole may have a unique double hump appearance, where the second peak of tensile residual stress might have appreciable greater magnitude compared to the first one resulting in a potential to exceed the strength of the material. This phenomenon must be taken into consideration when developing process protocols.

Additional challenges can appear when the part consists of several closely spaced holes positioned in-line or across from eddy current flow. Case studies have been reviewed and practical suggestions on enhancing microstructures in the vicinity of multiple oil holes were given addressing a double hump of transient stresses. Practical remedies were given to diminish probability of crack initiation when a part consists of multiple, closely positioned oil holes.

Experience shows that in many cases, the proper choice of design parameters (applied frequency, power density, inductor profiling, quench considerations, etc.) allows one to obtain the required hardened pattern around holes free of cracks, even in those cases that may seem first unsuitable for heat treating by induction.

Novel Developments

Newly developed induction thermal technologies occur quite regularly, offering impressive benefits. In its continuing tradition to further excel existing processes, Inductoheat is developing advanced technologies that enhance traditional processes. For example, thanks to newly developed inductor design, one of the world’s largest suppliers of automotive parts has achieved more than a ten-fold increase in a coil life of a single-shot hardening inductor compared to industry average life of conventional single-shot inductors. Enhancement has been verified by the manufacturer’s tool-room tag. Reasoning for such a dramatic coil life enhancement has been explained during seminars. Other benefits of this remarkable technology include a measurable improvement in process robustness and dramatically reduced process sensitivity.

Additional innovations are related to the unique ability of some of Inductoheat’s inverters to independently control power and frequency (like a CNC machine) during the scan hardening or a single-shot hardening, which helps further optimize thermal conditions.

Seminars provided an objective assessment of rapid tempering and stress relieving compared to longer-time oven tempering. An evaluation of mechanical properties and performance characteristics of components produced by different tempering techniques (e.g., longer-time oven tempering vs. induction rapid tempering), impact of steel’s chemical composition (including a carbon content and alloy composition), as well as an impact of hardness case depth and other practical factors when assessing applicability of induction tempering have been reviewed.

It is imperative to be aware that numerous studies recently conducted by various researchers worldwide clearly suggest that under specific conditions, a rapid tempering can be superior to oven tempering in helping to eliminate or dramatically minimize such undesirable phenomena as temper embrittlement (TE) and temper martensite embrittlement (TME) and measurably enhance toughness and ductility of rapid tempered steels.

Conclusion

It is our hope that the materials presented at these technical video seminars will help you to better understand the intricacies of thermal processing using electromagnetic induction and to deliver your company a competitive advantage to become a “world-class” user of this remarkable technology.

 

References

[1] G. Doyon, V. Rudnev, R. Minnick, T. Boussie, Troubleshooting and Prevention of Cracking in Induction Hardening of Steels, Lessons Learned – Part 1, Thermal Processing, September 2019, p.26-33.

[2] G. Doyon, V. Rudnev, R. Minnick, T. Boussie, Troubleshooting and Prevention of Cracking in Induction Hardening of Steels – Part 2, Thermal Processing, October 2019, p.30-37.

For more information, please contact: Inductoheat, Inc. in Madison Heights, Michigan or visit www.inductoheat.com or www.inductothermgroup.com.

Heat Treat Training Benefits Stellantis Read More »

Watervliet Arsenal to Receive New Ion Nitriding System

HTD Size-PR LogoWatervliet Arsenal will receive a new ion nitriding thermal processing furnace system with full controls. It will be fully installed and commissioned in a horizontal configuration.

Ben Bernard
Vice President of Marketing
Surface Combustion

This is the second ion nitriding furnace supplied from Surface® Combustion, to Watervliet Arsenal; the first was originally over 40 years ago. They awarded a contract to Surface so they could again bring their processing capability in-house. Adding control to the supply chain for product was one of the many reasons they acquired an ion nitriding thermal processing furnace system for their plant. This configuration best suits the facility and Watervliet Arsenal's processing needs, and will also include process development.

Surface has always placed a high value on customer relationships and believes that an equipment purchase is the beginning of something much more than a finite transaction. In fact, they have been working with the Watervliet Arsenal location for over 40 years.

"It is always great to see customers coming back to Surface," said Ben Bernard, vice president of Marketing at Surface, "because they appreciate our incredible product lines as well as our engineering capabilities and long standing relationships."

(Image source: Surface Combustion)

Watervliet Arsenal to Receive New Ion Nitriding System Read More »

Fringe Friday: First “Fossil-Free” Steel Delivered to Volvo in Sweden

Source: New Atlas

Sometimes our editors find items that are not exactly “heat treat” but do deal with interesting developments in one of our key markets: aerospace, automotive, medical, energy, or general manufacturing. To celebrate getting to the “fringe” of the weekend, Heat Treat Today presents today’s Heat Treat Fringe Friday Best of the Web article covering Volvo’s fossil-free steel use.

The world’s first “fossil-free” steel delivery, created with green hydrogen instead of coal and coke, will be delivered to the Volvo Group, where it will be used in electric trucks. Sweden’s SSAB Oxelösund made the trial delivery to Volvo in the hopes of building towards a 100% emissions-free manufacturing future.

[blockquote author=”” style=”1″]SSAB’s HYBRIT process uses hydrogen as the reductant as iron ore and limestone are combined to create steel, replacing “coke,” or baked coal. The traditional coal-fired blast furnace is also replaced with an electric arc furnace. The company makes sure the hydrogen electrolyzers, as well as its own arc furnaces, are run on “fossil free” renewable energy as well. What’s more, all of the iron ore used in the process will come from “fossil free” mining operations.[/blockquote]

Read more at: “First “fossil-free” steel delivered to Volvo in Sweden” and “The world’s first fossil-free steel ready for delivery

Fringe Friday: First “Fossil-Free” Steel Delivered to Volvo in Sweden Read More »

The Basics of Vacuum Aluminum Brazing

Source: Signature Vacuum

When you are a new heat treater, there are really only three things you want to know to get your bearings: What is it? How does it work? Why does it matter? That's it. What does that mean when we discuss "VAB"?

This best of the web article walks you through the three questions mentioned above, several advantages of vacuum aluminum brazing, and heating control.

An excerpt:

"The dwell time (soak) at braze temperature must be minimized as melted filler metal is vaporizing in the low pressure (high vacuum) environment. Too much filler metal vaporization can result in poor joint wetting and subsequent loss of joint strength and sealing ability. After the final brazing soak is complete, a vacuum cooling cycle follows, which stops material vaporization and solidifies the filler metal."

Read more: "The Beginner's Guide to Vacuum Aluminum Brazing (VAB)"

The Basics of Vacuum Aluminum Brazing Read More »

Manufacturer of EV Chassis Components Orders Furnaces for In-House Tooling

HTD Size-PR LogoAn international electric vehicle (EV) automaker has ordered high-pressure gas quenching (HPGQ), tempering, and nitriding furnaces for heat treatment of large high-pressure casting dies, which will be used in the production of aluminum underbody components for electric vehicles.

The tool & die market serving traditional and EV automotive markets use vacuum heat treating technology extensively to produce bright, high-quality parts. SECO/VACUUM Technologies, a SECO/WARWICK Group company, will provide two furnaces and auxiliaries with working zones that can accommodate loads with dimensions up to 1000mm x 1000mm x 2400mm (40″ x 40″ x 96″) and up to 7.5 metric tons of weight.

“[We] have built a reputation with [this client’s] engineering team,” explained Piotr Zawistowski, managing director of SECO/VACUUM, “[and so] we are capable of achieving the required quenching rates within such a large envelope, which will be accomplished with a powerful 500kW quenching system. The [client] also appreciated the custom engineering that we put into handling such a heavy workload.”

The Vector® vacuum hardening furnace is equipped with a convection heating system to improve heat transfer at lower temperatures, thus reducing internal stresses; the cooling system can quench with nitrogen at pressures up to 25 bar. The furnace will exceed NADCA 207 requirements for the quenching process and Class 2 temperature uniformity requirements per AMS2750F.

The nitriding furnace is a pit-type configuration, with working dimensions to match the hardening furnace. The patented ZeroFlow® nitriding process uses uniform high convection heating, precision nitriding potential, and ammonia control, along with vacuum purging to reduce operating costs.

 

Manufacturer of EV Chassis Components Orders Furnaces for In-House Tooling Read More »

Parts Cleaning: What the Experts Are Saying

OCIn the past, the topic of parts cleaning was not one that garnered much attention in the heat treating industry, but today, things have changed. Interest in parts cleaning is at an all-time high and that makes the need for parts cleaning discussion of vital importance in all types of heat treatment processes.

This article appears in Heat Treat Today's 2021 Automotive August print edition. Go to our digital editions archive to access the entire print edition online!


Heat Treat Today wanted to discover why parts washing is such an important step in the heat treat process and about its growing value, so we contacted respected industry experts for an in-depth analysis of the growing popularity of this important step in heat treating.

The following experts contributed to this analysis: Fred Hamizadeh, American Axle & Manufacturing (AAM); Mark Hemsath, Nitrex Heat Treating Services (HTS); Tyler Wheeler, Ecoclean; Experts at Lindberg/MPH; Andreas Fritz, HEMO GmbH; Richard Ott, LINAMAR GEAR; and Professor Rick Sisson, Center for Heat Treating Excellence (CHTE) at Worchester Polytechnic Institute (WPI).

Heat Treat Today asked 13 questions regarding parts washing and encouraged the experts to answer as many as they wished. The following article is a compilation of their experienced insight.

What role does parts cleaning play in the heat treat process and component quality? What is the cost or consequence for heat treating when cleaning is not done correctly? Any anecdotes you can share with us?

Fred Hamizadeh
Director of
Heat Treat & Facilities Process
American Axle & Manufacturing

Fred Hamizadeh, the director of Heat Treat & Facilities Process at American Axle & Manufacturing (AAM), says, “As a captive heat treater (supplying parts that are used in a final assembly), cleanliness of parts is of paramount importance to the longevity and durability of the final product. Parts that are completely unclean prior to heat treating can cause non-uniform case; and uncleaned parts after quenching can cause a multitude of issues, from failure in post-heat treat operations to higher cost of tooling due to contaminated surface, to fi res in temper furnaces from burn-off of the remnant oils on the surface of parts.”

Mark Hemsath
Vice President
of Sales, Americas
Nitrex Heat
Treating Services

Mark Hemsath, the vice president of Sales, Americas, at Nitrex Heat Treating Services replies, “For many surface engineering treatments like gas nitriding and ferritic nitrocarburizing, surface cleanliness is very important. Various oils and organic substances can impede—selectively or broadly—diffusion and surface activity. Some surface contaminants will bake on or ‘varnish’. Some can be removed with slow heating and purging or vacuum, or even surface activation, but it is not a reliable science. Either way, by positively cleaning them beforehand, problems are avoided. The issues occur when the composition and/or concentration of surface contaminants are not well known or preannounced. Pre-washing and cleaning take time, cost money, and must be studied and discussed with customers prior to any start of production. When parts are promised ‘clean', but arrive coated in an unknown rust preventative or cutting/forming oils, they need to be cleaned.”

Tyler Wheeler
Product Line Manager
Ecoclean

Ecoclean’s Tyler Wheeler, a product line manager, shares, “Cleaning plays a critical role that will directly affect the success of the heat treating process. While sometimes looked at as a nonvalue-added process, the consequences of not cleaning correctly are many and can be costly. Depending on the method of heat treating, quality issues may range from staining, discoloration, inconsistent properties, and even damage severe enough to scrap entire batches. Not only are there consequences for the workpieces themselves, but these problems may extend to damaging the heat treating equipment itself, leading to downtime and expensive repairs.”

The experts at Lindberg/MPH report there are several benefits to cleaning parts prior to any heat treating. They say: “By washing the parts prior to heat treating, it assures that the furnace chamber will remain conditioned and free from vapors, resins, binders, or solvents that could attack the refractory lining or heating elements and cause pre-mature failure of those items.”

What about the cost or consequences when the cleaning is not done correctly? “Washing parts prior to any thermal process, removes any layer of machine or cutting oils etc., which can be baked on and require additional and costly processes such as grit blasting, machining, or grinding to remove the unwanted layer on the surface of the parts.”

The Lindberg/MPH experts had an interesting anecdote to share about the importance of parts cleaning: “A customer was using a simple spray washer to clean small sun gears with an inner spline. The parts were to be carburized afterwards. The spray washer didn’t remove the machine oil used in the broaching process. During the carburizing process, the machine oil acted as a shield and didn’t allow the carbon to penetrate the ID properly, thus causing part failure on the gears. Afterwards, a dunk washer with heated water and a dry-off was purchased to clean the parts.”

Andreas Fritz
CEO
HEMO GmbH

Andreas Fritz, CEO at HEMO GmbH, explains, “Cleaning has always played a role in heat treatment. The question was always, ‘How clean is enough to keep the cleaning process as cheap as possible?’ Nowadays, especially in LPC or nitriding processes, the cleaning quality is at least equal to the hardening quality, because heat treaters understand that these processes belong together. There are no good hardening results without good cleaning quality.”

Additionally, Fritz continues, “a cleaned surface lowers the risk of defective goods after heat treatment by helping to provide a very good hardening depth and compound layer.”

Fritz shares a company-altering anecdote: “In the mid-1990s, we sold the first machine to a Bosch automotive supplier which had a captive heat treatment department. They delivered the cleaned and then hardened goods to Bosch, and their QM sent the goods back stating they were not hardened.

“Our customer asked if they checked the hardening quality, and Bosch replied: no, because the parts were not black; therefore, coming to the conclusion that they had simply forgotten to harden them. The supplier invited them to see that the parts were cleaned in a new way with a solvent-based cleaning machine under full vacuum. Since they came out spot-free after cleaning, there was no oil left, which formerly cracked on the surface and left the black color. The result was that for a couple of years, Bosch wrote on drawings that the parts had to be HEMO-cleaned before hardening. This was our start in the heat treatment industry and today, we make 50% of our annual turnover there.”

LINAMAR GEAR’s Richard Ott, a senior process engineer, offers his perspective, “Pre-cleaning and post-washing are very important because all parts coming into our plant can’t have any contamination on them. After heat treating, all parts are washed and blown off before temper.”

Historically, cleaning has not received the attention it deserves in the heat treat process. Have you seen any positive changes in perception among heat treaters in recent years?

Wheeler of Ecoclean addresses the perception of value: “Historically, the cleaning process has been looked at as a non-value-added necessity of manufacturing. However, this attitude is becoming a thing of the past for companies who invest in a quality cleaning process. As of late, customers have placed a greater focus on their cleaning processes both before and after heat treating as quality and production demands continue to increase. A proper cleaning process can eliminate scrap, increase uptime, and lead to a better-quality product for the end customer, which may translate into additional orders. When considering the holistic benefits of a proper and robust clean process, the old mentality is starting to change.”

The experts at Lindberg/MPH reply, “For many years washing parts before or after heat treating was considered an optional process and often bypassed. Today, most commercial and captive heat treaters are using parts cleaning as a necessity, particularly in the growing vacuum heat treating sector, where any contamination is detrimental to the hot zone and pumping systems.”

HEMO’s Fritz explains, “Commercial heat treaters specifically, changed their minds very early because they saw the chance to cover the various cleanliness demands of all hardening methods and processes with one single cleaning system. The hybrid cleaning system which made it possible to clean with solvent or with water or in combination in the same machine, made it possible for them to ensure hardening quality for any incoming good, no matter which residue was on it.

“They were able to cut down costs by using only one cleaning system and by increasing the income per ton due to increased quality and less defective parts.

“The captive heat treaters changed when they sent parts outside to commercial heat treaters while they did annual maintenance or when they didn’t have enough of their own capacity. The returned parts were of much better quality; and they started introducing this kind of cleaning system as well.”

Hemsath of Nitrex agrees about rising standards: “Similar to other areas of heat treatment, OEMs continue to raise their standards for part cleanliness. Sometimes these standards are rooted in functional requirements such as minimizing the number of foreign particles in a closed system in the finished product and other times the requirements are purely aesthetic. In either case, the result is that, in recent years, heat treaters have been required to devote more resources to improve their cleaning processes proactively during the quoting/process design stages, or reactively as a result of non-conformance. Many commercial heat treaters have come to understand that evaluating the cleaning needs of a part and implementing a robust cleaning process before production begins results in a better customer experience as well as improved long-term profitability.”

AAM’s Hamizadeh concurs with a positive change in perception: “Yes! As automotive industry reliability demands are increased, more and more attention is placed on all aspects of cleanliness, which includes heat treat washers.”

Ott, of LINAMAR GEAR, shares evidence of the rise in parts cleaning importance, saying, “Yes, our washers are checked twice a day for concentration and cleanliness.”

How can heat treaters determine their cleaning needs?

Rick Sisson
George F. Fuller
Professor and Director of the Center
for Heating Excellence (CHTE)
Worchester Polytechnic Institute

Rick Sisson, the George F. Fuller Professor and director of the Center for Heating Excellence (CHTE) at Worchester Polytechnic Institute (WPI), explains, “The incoming materials should be carefully examined visually to identify the type and quantity of surface contamination. Look for heavy oil, light oil, cutting fluids and/or rust, and scales. The cleaning process should be selected to remove the type of surface contamination identified. In general, a cleaning process should be included prior to heat treating to ensure a predictable response to the heat treating or surface modification process.”

Sisson continues, “The heat treater must confer with their customer to determine the post-heat treat cleaning requirements. If the part will be ground or machined after heat treat, then post-heat treat cleaning is not required. However, if the part is ready to be shipped, then the appearance is important. For medical applications, any discoloration may be a cause for rejection. The surface finish may be important and should be discussed with the customer.

“The pre-heat treat cleaning requirements are determined by the effects of cleanliness on the heat treat performance. For surface treating, a dirty surface may affect the carburization or nitriding performance. Nitriding is very sensitive to the surface cleanliness. A fingerprint can inhibit the nitrogen uptake and result in soft spots. Carburizing is less sensitive to oils and grease, but corrosion products may inhibit the surface reactions and cause soft spots. However, it is best practice to examine the preheat treat parts and clean away the oils and grease. Corrosion products (aka rust) and cutting fluids ensure a uniform response to the heat treating process,” Sisson concludes.

Hamizadeh of AAM states, “Most customers should have a specification. Start by reviewing the provided prints and follow up with the final customer to determine if parts are further washed with dedicated process washers prior to installation in the final product.”

He concludes, “Nevertheless, heat treaters must provide a part which is clean, uniform in color, and free of quench oil on surfaces and cavities. Parts must also not exhibit any markings from oxidized quench oil (tiger stripes), either.”

“We are in-house heat treaters. Our customers require spotless parts and if they’re not, then we need to clean them,” explains Ott of LINAMAR GEAR.

Fritz from HEMO shares his perspective: “Heat treaters usually have their own labs to check the hardening quality. If the quality is not stable, the cleaning could be the reason. Additionally, they could send parts outside to be cleaned in a different way. Then do the hardening in their shop to see if there is a difference. In most cases, their customers tell them if the quality is not good. We are then the ones to offer our experience and take them to the next level.”

Ecoclean’s Wheeler describes their process in determining cleaning needs: “When determining the needs of a cleaning system, it is essential to understand the incoming contaminants on the part. In addition, one needs to understand which upstream manufacturing processes were used, the requirements of the heat-treating process, and which type of heat-treating process is being used. Not all cleaning systems are created equally, and not all approaches work in every scenario. For example, phosphate-coated parts coming from a stamping process will require a different cleaning system than a machined part. Working together closely with your cleaning equipment supplier is the best way to ensure that the best cleaning process is implemented for your specific application.”

How do the requirements for cleaning differ between pre- and post-heat treating?

The experts at Lindberg/MPH explain: “Pre-washing parts ahead of heat treating is needed to remove any oils or solvents that can remain on the parts. Also, some parts can hold wash water and some residue that can be carried into the furnace, and those must be blown-off or dried before the next operation.”

They continue: “Post-washing parts, particularly after oil quenching, is needed to remove any oil that might be trapped—parts such as pistons, valves, and gears with recessed areas. Most of those batch washers are fitted with a dunk or oscillation feature where the load is completely submerged, then drained and dried before moving to the tempering process. For many years, a single washer was used for both pre- and post-washing, but that practice has largely stopped.”

Nitrex’s Hemsath states, “When oil quenching in vacuum oil quench furnaces or standard integral quench furnaces, the oil is known, and it must be removed prior to temper operations. Quench oils are often difficult to remove completely, especially in hot oil quenching applications. Tempering can help with further removal of the oils, or it can make the situation worse by baking on quench oil residues into tough, difficult-to-remove deposits. With post-cleaning, the contaminants are well known, and they do not impede the heat treatment or surface engineering.” Hemsath continues, “Contaminants on the part’s pre-heat treatment must be removed for vacuum furnace operations to protect the equipment and prevent carbon pickup on the parts. Pre-contaminants must also be removed to help with processes such as gas nitriding, FNC, and low-pressure carburizing (LPC). Since LPC is a vacuum process, precleaning is more critical than with gas atmosphere carburizing, where the hot hydrogen gas can be effective at assisting with pre-cleaning of parts. However, even in atmosphere heat treating, minimizing the number of foreign substances entering the furnace on each part will help ensure a more consistent process and extend quench oil life.”

Wheeler of Ecoclean states, “Different goals and objectives drive the requirements of the pre-and post-heat treat cleaning systems. A pre-heat treat cleaning process aims to remove all contaminants produced by the upstream manufacturing process that could negatively affect the heat treating process. Without a proper pre-cleaning process, the heat treating may not be effective, parts could be damaged, and even the heat treating equipment itself could face damage. The goal of the post-heat treat cleaning system is to ensure that the final product meets the quality demands of the customer or end-use application. The needs of these systems may be driven by strict specifications which limit the number of allowable particulates and even the maximum size of each particle.”

Hamizadeh of AAM agrees that the processes are in no way similar. He says, “Drastically different. Pre-wash is intended to clean the product from any upstream contaminants, cutting fluids to provide a clean, uniform surface for process. Additionally, pre-wash is used to protect the heat treat equipment from contamination from oils and chemicals, which will have an adverse effect on lining or internal alloy components of the furnaces.”

He further explains, “Post-washers are historically built to remove the bulk quench oil from the part. However, it is more common that parts have irregular shapes, hidden holes, and geometries that make it difficult to remove trapped oils.”

“In the case of pre-cleaning, we make a difference between organic and inorganic residues,” Fritz of HEMO contends. “An old chemical says, ‘Similar dissolves similar.’ Hence, it is important to identify the residues of parts before pre-cleaning.”

He continues, “Water-based coolant should be cleaned with water and detergent because solvent would leave white spots caused by salts.”

“Oil is organic and should be removed by solvents like hydrocarbon or modified alcohol because water and oil are not a good mixture,” explains Fritz. “Anybody who first cleans an oily pan before a glass in the same bath knows that. Sometimes the parts have both kinds of residues on them due to several production processes before heat treatment. Then a hybrid cleaning machine is the perfect solution, because it first takes away the organics with solvent and then the inorganic spots with water.”

He concludes, “In the case of post-cleaning, we mainly talk about cleaning after oil quenching. In this case, water is the worst solution because the cleaning quality is not good, and the amount of wastewater is immense. A pure solvent machine is the best option for this scenario.”

How does cleaning differ between commercial heat treat shops and in-house/captive heat treat departments?

Sisson of CHTE describes the difference this way: “The need for cleaning remains the same. Captive heat treaters will have the benefit of heat treating the same parts over time and should document the contamination identified and the cleaning methods used. Frequently the parts will be coming from a machining or surface finishing operation. A discussion with the machine shop will identify the contamination.

“Commercial shops will see a wide variety of parts and should develop an incoming materials evaluation process to determine the type and extent of surface contamination. As part of this incoming material evaluation process a cleaning process should be specified for each incoming part. The process to remove grease and oil is different from corrosion products.”

How clean is clean anyway? How can one determine cleanliness? How can heat treaters identify the right cleaning method for their applications? What should they pay attention to?

“Specifications based on design and final function of the part will determine the cleanliness requirement,” Hamizadeh of AAM points out. “It is imperative to determine the cleanliness requirements prior to processing the parts. This could be surface chemical, oil contamination, or particulate allowed on part in terms of grams allowed per part or number of particles of determined size per part. Pay attention to customer contractual requirements based on RFQ or part print, or customer specs as stated in part drawings.”

“When answering this question, we need to ask ourselves: ‘What is the end goal of the cleaning process and what contaminants am I removing?’” Wheeler of Ecoclean begins. “Not all contaminants are created equally, nor will they successfully be removed using the same approach. The types of equipment, process steps, machine parameters, and chemicals used for cleaning need to be chosen carefully to ensure a successful and robust process.”

He explains: “Cleaning prior to heat treating is focused on preparing the parts for a successful heat treat, which means we need a surface free of oils, coolants, and particulates. In addition to the cleaning aspect, it is also crucial to sufficiently dry the parts before treating them to prevent damage during the heat treating process. A simple test to check for cleanliness prior to heat treat is to perform a ‘water break test,’ where clean water is rinsed across the surface with a goal of seeing a continuous film of water running across the whole part without being interrupted. A more scientific approach involves measuring the surface energy of the piece by using a contact angle measurement tool or Dyne pens.”

Wheeler clarifies: “When asking how clean the parts need to be post-heat treatment, there may be drastic differences based on customer quality requirements and the end-use of the workpiece. These requirements can range from simple visual cleanliness checks to strict maximum residual particle size limitations. The evaluation for conformity to these high-end specifications will require the use of multiple pieces of lab equipment, including expensive particle measuring and counting microscopes.” CHTE’s Sisson illustrates, “As we have seen in old movies, the butler wears white gloves and after rubbing the surface any contamination can be seen. There is a limited number of types of surface contamination for heat treaters to identify: heavy oils, light oils, cutting fluids, and corrosion products (rust and scales). Knowledge of the part history will help identify the contamination and therefore the cleaning method.

“The largest impact will be on nitriding and ferritic nitrocarburizing (FNC) processes. Surface contamination inhibits the absorption of nitrogen by interfering with the decomposition of ammonia on the steel surface. Even the grease from fingerprints can cause soft spots,” he concludes.

HEMO’s Fritz shares, “Clean can be visually clean or when you wipe a cleaned part or when a part is not dirty after the hardening process because it was cleaned well before.”

In determining cleanliness, Fritz continues, “Optically, for example, use an ink pen that shows the surface tension. A high surface tension shows a well cleaned surface.”

And finally, identifying the right cleaning method and focus: “First thing is to always identify the residues which are on the parts. If this is identified the cleaning process can be selected accordingly.”

What might be the impact for furnaces if components are not cleaned thoroughly?

Fritz of HEMO answers, “The residues vaporize and crack on the furnace walls. The walls then must be stained new in short intervals. This can be prevented by using a better cleaning system.”

“Heat treating oily parts will cause the oils to burn and fill the room with smoke and oil vapors. These gases and the smoke will deposit in the furnace and reduce performance and furnace life,” shares Sisson of CHTE.

The experts at Lindberg/MPH explain, “For many years unwashed parts were placed in tempering furnaces to burn-off the machine oils rather than washing. Over time, all that machine oil saturated the furnace brickwork or coated the heating elements, which had to be replaced much sooner than needed. Today, due to some environmental issues, that ‘smokebomb’ has become a problem, and the washer has become a sound solution and a proven benefit.”

AAM’s Hamizadeh says, “I’ve seen carburizing furnaces become contaminated with chemicals from prewash. They glazed the hard refractory into a glass and caused adhesion between silicon carbide rails and alloy base trays.” He continues: “We’ve also seen excessive smoking from temper progress to an occasional, but rare fire in a temper furnace or a more probable fire in exhaust ducts due to oil film build up.”

What cleaning options are available? What are their pros and cons?

“Traditional batch or continuous spray washers with or without dunk is an absolute minimum,” states Hamizadeh of AAM. “Other equipment such as Aichelin’s Flexiclean Vacuum washer can do a fabulous job without the use of solvents. Today—as a minimum—prewash systems should have a 3-tank system of wash, rinse & rinse, and blowoff. Post-washers should have 4-stages: 2-wash, followed by 2-rinse, and blowoff dry stage. Conventional washers are very cost-effective. Newer technology washers, with the use of advanced skimmers, multistage filtration, and ultrasonics to get the best agitation possible, will improve the capability of the machine. Dedicated and custom designed line washers perform the best, but also cost the most.”

HEMO’s Fritz shares, “I think the inline water-based dip and spray cleaners with hot air or vacuum drying are still fine for 50% of all applications in heat treatment. Anything else would be too expensive and simply not necessary. But for higher demands, more sophisticated systems are necessary. There you find top or front-loading full vacuum machines which can run water with detergent, solvents, or both.”

“For most washers, added features such as skimmers, oil traps, and dual-can type filters are very popular,” point out Lindberg/MPH experts. “These options help in keeping the washing media cleaner and free from loose metal, chips, and free carbon. The cost of these items is minimal compared to dumping several hundred gallons of water and many chemicals on a regular basis.”

They conclude, “Most washers, especially those fitted with the dunk features, are built with stainless steel tanks and all structures that are submerged in the washing solution. The extra cost for stainless steel far outweighs the cost of replacing a mild steel-lined tank or coated tank, which both have a much shorter life than the stainless-steel units.”

Apart from technical cleanliness, are there other aspects that heat treaters should consider in their choice of the right cleaning solution? Do certain materials demand specific cleaning precautions? What cleaning methods will be particularly suited to specific types of soils?

LINAMAR GEAR’S Ott says, “Washer chemistry that will remove oil and other surface contaminants and possibly leave a protective coating on the parts may be worth developing, so that flash rusting will not occur before the tempering operation.”

AAM’s Hamizadeh explains, “For specific parts and materials, specific washers with specific chemicals are needed. All parts should be compared to detergents used, temperatures, and agitation/spray pressures they can endure.”

“They should consider the quality of the final product,” Fritz of HEMO details. “They should consider environmental issues like wastewater, amount of detergent, heating energy, etc. They should consider cycle time and the degree of cleanliness required. Altogether it will lead them to a total cost of operation consideration, and they will find out that a high investment doesn’t mean higher operating cost over the lifetime of the equipment.”

He shares that “Copper and aluminum, especially, must be handled with care when selecting a way of cleaning.”

What common issues do heat treaters experience in the cleaning process? And how can these be avoided?

Nitrex’s Hemsath explains, “There are various methods for cleaning from vapor degreasing to ultrasonic methods. Each has benefits and negatives, such as environmental impact issues or cleaning of various contaminants completely. Another issue is part orientation and cost of parts handling. Continuous small parts cleaning can allow better part orientation, say, for cylinders. However, the labor content adds to costs for individual parts placement. No operation, especially commercial heat treat operations, can have all the cleaning options. It is not uncommon to hand-clean parts that are difficult to clean in a batch or continuous processes. The biggest problem is not knowing what the exact contaminants are.”

“Complex part geometries and pack density of the load are common load issues that are faced. Regular maintenance of washers—filters, skimmers, titration practices to maintain chemical balance—will all affect their performance. A regimented SPC and quality control specification should be required to ensure all work is completed and signed off by appropriate quality team members,” states Hamizadeh of AAM.

Fritz of HEMO cautions, “The biggest issue is the white layer or spots on the parts which result from inorganic residues. They pollute their water-based cleaning media with oil and other organics and then the media is not strong enough to additionally clean off the inorganics. This can cause soft spots on the surface after the hardening process. “The second big thing,” he says, “is that the cleaning quality is decreasing with every cycle. In a solvent machine with a good distillation device, you always have a constant quality.”

Have you noticed any changing requirements or expectations in terms of cleaning quality for heat treat processes over the last 5 years?

Hamizadeh of AAM answers affirmatively, “Yes. Tighter specs for amount of carry over oil or oil residue on parts.”

HEMO’s Fritz concurs, “The requirements change because the industry is changing. We go to electric vehicles, which means we need to harden new kinds of parts that are made of new kinds of materials, alloys, and composites. This means a modification of the hardening and of the cleaning process.”

Ott from LINAMAR GEAR has noticed, “Parts are compared to vacuum heat treat, so the cleanliness is very important, especially in automotive.”

What challenges do you think will confront heat treaters in the next 5 years, specifically regarding parts cleaning? Where do you see trends heading?

“Electric drive units will require a reexamination of the part washing and available technologies. It’s going to become more difficult. Not easier,” believes AAM’s Hamizadeh.

Fritz of HEMO predicts, “The main challenge will be to stay alive. With the rise of the electric car, fewer parts will be heat treated. Heat treaters must offer the best possible quality for reasonable prices in order to survive. This is not possible with the old way of cleaning.” He sees trends “. . . still going to vacuum. LPC is very strong and will be increasing. Additionally, gas and plasma nitriding will increase. Especially in those cases, a clean surface is the only way to have a reliable hardening process with consistent quality.”

Fritz concludes, “The other trend is small batches. That is the reason why we redesigned our small cleaning machines to also be able to survive in the heat treatment environment.”

“Totally clean parts,” is the challenge Ott of LINAMAR GEAR sees.

How can heat treaters balance the need for component cleanliness and cost-effectiveness for their operation?

Ecoclean’s Wheeler maintains, “When searching for the balance between cleanliness and cost, defining what costs are genuinely associated with cleaning is essential. Some of these costs may be obvious, while others may not be so clear at first glance. In too many instances, the actual lifecycle costs of owning and operating a cleaning system are not taken into consideration as the main focus is instead the upfront investment of the machine itself.

Utility costs, chemical usage, waste disposal, and maintenance are only some of the expenses that will add up over the life of a piece of equipment which may significantly impact its cost-effectiveness over an alternative solution. One example in this instance is using a vacuum solvent cleaning system over an aqueous-based machine. While the solvent system will typically come with a higher upfront purchase price, it is generally more cost effective to own in the long run when compared to the water-based system.”

Wheeler continues, “The other question that one should ask when deciding on how much to spend on a cleaning system is what the cost of purchasing the wrong system is. How much will be spent on scrapped parts, repairing damaged heat treating equipment, and downtime caused by the improper cleaning of parts? These may not always seem obvious upfront, yet they are actual costs that every manufacturer may face. While there is no one-size-fits-all approach for every company, it is essential to consider all obvious and hidden costs associated with the cleaning process when looking for the balance between price and quality.”

“For captive heat treaters,” Hemsath of Nitrex answers, “their contaminant stream is much better understood, and a solution can be custom engineered to provide repeatable results. For commercial heat treat facilities, cleaning operations have to satisfy many part sizes, orientations, and a multitude of contaminations that are often not well understood. So, the cleaning operation must be a process that gets most of the contaminants on most of the parts. Good communication with the part maker is essential to prevent problems, especially in long-term programs where the same parts are heat treated for many years.”

“They must do a total cost of operation examination of their whole process in order to find the right system,” encourages Fritz of HEMO.

These experts have spoken and offered much valuable insight into the world of parts cleaning. No longer can this process be viewed as “a non-value-added necessity of manufacturing,” as Tyler Wheeler of Ecoclean observed. Today, parts cleaning is proving to be an important component for success in heat treating.

 

For more information, contact the experts:

Fred Hamizadeh, Director of Heat Treat & Facilities Process, American Axle & Manufacturing, Fred.Hamizadeh@aam.com

Mark Hemsath, Vice President of Sales, Americas, Nitrex Heat Treating Services, mark.hemsath@nitrex.com

Tyler Wheeler, Product Line Manager, Ecoclean, Tyler.Wheeler@ecoclean-group.net

Lindberg/MPH, lindbergmph@lindbergmph.com, 269.849.2700

Andreas Fritz, CEO, HEMO GmbH, a.fritz@hemo-gmbh-de

Richard Ott, Senior Process Engineer, LINAMAR GEAR, Richard.Ott@Linamar.com

Rick Sisson, George F. Fuller Professor & Director of the Center for Heating Excellence, Worchester Polytechnic Institute, sisson@wpi.edu

technical Tuesday

Parts Cleaning: What the Experts Are Saying Read More »

Meeting Heat Treat Standards: 10 Tips and Tricks

OCWant a free tip? Check out this read of some of the top 101 Heat Treat Tips that heat treating professionals submitted over the last THREE YEARS. These handy technical words of wisdom will keep your furnaces in optimum operation and keep you in compliance. If you want more, search for "101 heat treat tips" on the website! This selection features 10 tips to meet heat treat industry standards.

Also, in this year's show issue, Heat Treat Today will be sharing Heat Treat Resources you can use when you're at the plant or on the road. Look for the digital edition of the magazine on September 13, 2021 to check it out yourself!


Compliance Issues? Try On-Site Gas Generation

On-site gas generation may help resolve compliance issues. Growth and success in thermal processing may have resulted in you expanding your inventory of reducing atmosphere gases. If you are storing hydrogen or ammonia for Dissociated Ammonia (DA), both of which are classed by the EPA as Highly Hazardous Materials, expanding gas inventory can create compliance issues. It is now possible to create reducing gas atmospheres on a make-it-as-you-use-it basis, minimizing site inventory of hazardous materials and facilitating growth while ensuring HazMat compliance. Modern hydrogen generators can serve small and large flow rates, can load follow, and can make unlimited hydrogen volumes with virtually zero stored HazMat inventory. Hydrogen is the key reducing constituent in both blended hydrogen-nitrogen and DA atmospheres—hydrogen generation (and optionally, nitrogen generation) can be used to provide exactly the atmosphere required but with zero hazardous material storage and at a predictable, economical cost.

(Nel Hydrogen)


Inspection Mistakes That Cost

Rockwell hardness testing requires adherence to strict procedures for accurate results.  Try this exercise to prove the importance of proper test procedures.

  • A certified Rc 54.3 +/- 1 test block was tested three times and the average of the readings was Rc 54 utilizing a flat anvil.  Water was put on the anvil under the test block and the next three readings averaged Rc 52.1.
  • Why is it so important that samples are clean, dry, and properly prepared?
  • If your process test samples are actually one point above the high spec limit but you are reading two points lower, you will ship hard parts that your customer can reject.
  • If your process test samples are one point above the low spec limit but you are reading two points lower, you may reprocess parts that are actually within specification.
  • It is imperative that your personnel are trained in proper sample preparation and hardness testing procedures to maximize your quality results and minimize reprocessing.

(Young Metallurgical Consulting)


Where You Measure Matters

Eugene Gifford Grace (August 27, 1876 – July 7, 1960) was the president of Bethlehem Steel Corporation from 1916 to 1945. He also served as president of the American Iron and Steel Institute and sat on the board of trustees for Lehigh University, of which he was an alumnus. One of his famous quotes is as follows:

“Thousands of engineers can design bridges, calculate strains and stresses, and draw up specifications for machines, but the great engineer is the man who can tell whether the bridge or the machine should be built at all, where it should be built, and when.”

If you check out the additional accomplishments of Mr. Grace, you will see that he was a successful and smart person. Maybe all of us are not capable of reaching such breadth of vision as he articulated above, but as heat treaters, do we simply accept the specification given? Or do we stop to ask if the specification has been properly determined?

With modern computer added stress analysis (FEA), we have at our fingertips a way to move beyond both the “guess and test” and the “copy the historical spec” methods of determining the case depth. Within “guess and test,” of course there are scientific guesses and scientific wild guesses. If you are using a wild guess, chances are that the field is the test lab!

Figure 1. Metallurgical mount holding a cross-section of the steel gear.

Especially for carburized components, deeper case is more time in the furnace, and thus more expensive. I continue to wonder why, if even back in the 1950s, thousands of engineers were available who could calculate stresses and strains and thus set a quantitative foundation for a case depth, in 2019, so few people take advantage of modern technology to optimize the cost of their products.

If you are not ready to take this big step toward design optimization, maybe you would consider always using effective case depth, based on hardness and thus linked to tensile strength, instead of total case depth, which is not linked to any durability or strength criteria.

Figure 1 shows the metallographic cross-section that was used to measure the hardness. Each white pin point is a Knoop 500 gram hardness indentation. The cross-section of the gear was mounted in black epoxy resin. Figures 2 to 4 show the data collected to determine the effective case depths to the common Rockwell C 50 criteria.

Figure 2. Knoop 500 gram hardness data converted to Rockwell C at the tooth flank.

Figure 3. Same data but for Root position.

Figure 4. Same data as shown in Figure 3, near surface information easier to see.

The effective case depth is the depth where the hardness dips below HRC50. For Gear Tooth Flank A, that value was 0.85 mm. For another gear from the same lot, it was over 1.08 mm. But for the root areas, between the teeth—the high-stress area, the effective case depths were only 0.45 and 0.65 mm, respectively. Figure 3 shows the same data as Figure 2, but using a logarithmic scale, illustrating what’s going on near the surface layers more clearly.

In any case, there’s a big difference between the two test locations, and this shows the importance of making sure that all relevant features of the component are adequately characterized!

(Aliya Analytical, Inc.)


AMS2750 Is Golden

This standard is gold and unfortunately has a bad rap today because companies feel it’s just added cost into the process. Today’s technology means you can afford AMS2750E compliant controllers and digital recorders for only a few hundred dollars above a standard offer. This investment will be paid back many times over due to the longer lifetime expected with a quality instrument as well as the quality benefits from better drift performance between calibration intervals, redundant recording (in case of record loss), and overall accurate temperature control, leading to less rejects and reduced rework.

(Eurotherm)


Snagged T/C Wire – Avoid It

Try not to use insulated thermocouple wire if you snag the insulation off the outerjacket along the length of the wire. This may cause the inner insulation to fail andcause low temperature readings.

(WS Thermal)


Order SAT Probes All at Once

Place a yearly blanket order for your SAT probes and ask that they are made from the same coil. This will give you the same correction factors and temperature tolerances.

(GeoCorp)


Out of Control Carburizing? Try This 11-Step Test

When your carburizing atmosphere cannot be controlled, perform this test:

  1. Empty the furnace of all work.
  2. Heat to 1700°F (926°C).
  3. Allow endo gas to continue.
  4. Disable the CP setpoint control loop.
  5. Set generator DP to +35°F (1.7°C).
  6. Run a shim test.
  7. The CP should settle out near 0.4% CP.
  8. If CP settles out substantially lower and the CO2 and DP higher, there’s an oxidation leak, either air, water or CO2 from a leaking radiant tube.
  9. If the leak is small the CP loop will compensate, resulting in more enriching gas usage than normal.
  10. Sometimes but not always a leaking radiant tube can be found by isolating each tube.
  11. To try and find a leaking radiant tube, not only the gas must be shut off but combustion air as well.

(AFC-Holcroft)


3 Tips to Meet Temperature Uniformity Surveys

  1. Adjust the burners with some excess air to improve convection.
  2. Make sure that the low fire adjustment is as small as possible. Since low fire will provide very little energy, it will make the furnace pulse more frequently and this will improve heat transfer by convection and radiation.
  3. Increase internal pressure. This will “push” heat to dead zones allowing you to increase your coldest thermocouples (typically near the floor and in the corners of the furnace).

(Nutec Bickley)


CQI-9 Best Practices

Whether you need to meet rigid CQI-9 standards or not, what are the top 3, nay 4 best practices that nearly every in-house heat treat department ought to follow to make sure their pyrometer stuff is together?

Daily furnace atmosphere checks. Use an alternative method to verify your controls and sensors are operating properly and that there are no issue with your furnace or furnace gases.

Daily endothermic generator checks. Using an alternate method to verify your control parameter (dew point typically) or the gas composition is accurate will alleviate furnace control issues caused by bad endothermic gas.

Verify/validate your heat treat process every 2 hours OR make sure process deviations are automatically alarmed. this is a solid practice to ensure your controls and processes are running properly. This practice can help ensure that parts are being heat treated to the proper specification intended.

Conduct periodic system accuracy tests (SATs) per pre-defined timelines in CQI-9. Good pyrometry practices are an essential part of heat treatment. Because of the importance of temperature in heat treatment, ensure timeliness of all pyrometry practices addressing thermocouple usages, system accuracy tests, calibrations, and temperature uniformity surveys.

(Super Systems, Inc.)


Inspection Mistakes That Cost

Rockwell hardness testing requires adherence to strict procedures for accurate results.  Try this exercise to prove the importance of proper test procedures.

  • A certified Rc 54.3 +/- 1 test block was tested three times and the average of the readings was Rc 54 utilizing a flat anvil.  Water was put on the anvil under the test block and the next three readings averaged Rc 52.1.
  • Why is it so important that samples are clean, dry, and properly prepared?
  • If your process test samples are actually one point above the high spec limit but you are reading two points lower, you will ship hard parts that your customer can reject.
  • If your process test samples are one point above the low spec limit but you are reading two points lower, you may reprocess parts that are actually within specification.
  • It is imperative that your personnel are trained in proper sample preparation and hardness testing procedures to maximize your quality results and minimize reprocessing.

(Young Metallurgical Consulting)


Check out these magazines to see where these tips were first featured:

 

 

Meeting Heat Treat Standards: 10 Tips and Tricks Read More »