Forging

Forging Provider Elevates In-House Heat Treat Department

Kuźnia Jawor, a company specializing in the production of hot forged and CNC machined components for the automotive, machinery, mining, and piping industries, has enhanced its manufacturing capabilities through the addition of an oil-hardening furnace and two nitriding furnaces from a supplier based in North America.

Kuźnia Jawor replaced their production line with an oil-hardening furnace and two outdated nitriding furnaces from Nitrex. The decision to upgrade was prompted by the need to eliminate outdated technology and address controls issues. The current production line has been designed using a Nitrex nitriding system and a vacuum hardening furnace.

Kuźnia Jawor leverages its in-house capabilities to design and manufacture forging tools, a crucial element of the production process. This is necessary for obtaining repeatable strength parameters in steel and ensuring their resistance to geometric changes or abrasive wear, factors that are addressed through heat treatment. The new equipment enables them to actively reduce CO emissions, decrease energy consumption, and more.

Nitrex furnace

The company’s forging and CNC processes are marked by meticulous precision, with dies initially undergoing treatment in the vacuum furnace before proceeding to the nitriding phase. This multi-step approach is essential for achieving a zero-white layer, effectively preventing surface cracking in the H11, H13, and WNL hot work steel dies subjected to high-pressure hammer forging. A crucial part of this initiative was the installation of a Nitrex horizontal-loading system, featuring the furnace model NXH-9912, a custom solution designed to facilitate the seamless automatic transfers of loads between operations.

The turnkey system is equipped with Nitreg® nitriding technology, which enhances the wear and corrosion resistance of treated tooling. This technology improves efficiency gains, leading to savings in process time and resources, including electricity and process gases. Furthermore, the system adheres to industry standard 2759/10 controlled nitriding, ensuring the highest quality and precision in the heat treating process.

Interestingly, Kuźnia Jawor is also engaged in an ongoing collaborative research and development project with a local university, exploring hybrid coatings that combine Nitreg® nitriding technology with PVD and CVD processes, with the aim of further enhancing tool performance.

Located in the southwestern region of Poland, Kuźnia Jawor is a provider of forged and CNC automotive parts within Poland and mining parts in international markets such as Czechia and Türkiye.

Marcin Stokłosa, Nitrex Technical Sales Manager, NITREX Poland
(Source:LinkedIn.com)

Marcin Stoklosa, manager of Technical Sales at Nitrex, who oversaw this endeavor, sums it up, “Kuźnia Jawor’s choice to partner with Nitrex was driven by the need to replace outdated equipment, modernize, and expand their production facility. The result? Improved quality, enhanced performance, and a stronger position in the forging industry.”


Find Heat Treating Products And Services When You Search On Heat Treat Buyers Guide.Com

Forging Provider Elevates In-House Heat Treat Department Read More »

Feel the Heat This Valentine’s Day!

No better time to turn up the heat than Valentine’s Day! Of course, we at Heat Treat Today are talking about the heat treatment kind of heat!

Looking into history, the work of blacksmithing was one of necessity for every day life. Tools for man and horseshoes for the workhorses were some of the things required from the smithy’s forge. Take a step back in time to read this poem by Henry Wadsworth Longfellow about the way things used to be.


The Village Blacksmith

Under a spreading chestnut-tree
⁠The village smithy stands;
The smith, a mighty man is he,
With large and sinewy hands,
And the muscles of his brawny arms
Are strong as iron bands.

His hair is crisp, and black, and long;
His face is like the tan;
His brow is wet with honest sweat,
He earns whate’er he can,
And looks the whole world in the face,
For he owes not any man.

Week in, week out, from morn till night,
You can hear his bellows blow;
You can hear him swing his heavy sledge,
With measured beat and slow,
Like a sexton ringing the village bell,
When the evening sun is low.

And children coming home from school
Look in at the open door;
They love to see the flaming forge,
And hear the bellows roar,
And catch the burning sparks that fly
Like chaff from a threshing-floor.

He goes on Sunday to the church,
And sits among his boys;
He hears the parson pray and preach,
He hears his daughter’s voice
Singing in the village choir,
And it makes his heart rejoice.

It sounds to him like her mother’s voice
Singing in Paradise!
He needs must think of her once more,
How in the grave she lies;
And with his hard, rough hand he wipes
A tear out of his eyes.

Toiling,—rejoicing,—sorrowing,
Onward through life he goes;
Each morning sees some task begin,
Each evening sees it close;
Something attempted, something done,
Has earned a night’s repose.

Thanks, thanks to thee, my worthy friend,
For the lesson thou hast taught!
Thus at the flaming forge of life
Our fortunes must be wrought;
Thus on its sounding anvil shaped
Each burning deed and thought.

Poet: Henry Wadsworth Longfellow

Photo Source: Unsplash.com/Cathal Mac an Bheatha


Find heat treating products and services when you search on Heat Treat Buyers Guide.com


Feel the Heat This Valentine’s Day! Read More »

Forging and Metalcasting Resources To Keep You Informed

OCWe've assembled some of Heat Treat Today's resources on forging and metalcasting. Read or listen to what the experts have to say on these important topics in the heat treat industry.

This Technical Tuesday original content piece will help you wade into an introduction of these heat treatment processes. Follow the links to dive deeper into the studies.


The span of articles, radio episodes, and TV clips below are compiled to learn more about forging and casting. Heat treating is developing and changing through the years, and it's wise to keep swimming with the current of information.

Simulating Induction Heating for Forging

What can simulation software do for you? Manufacturers are able to run the software to act upon the steel billet prior to forging. Read more about the process here. The simulation shows results in the metal to help the user best plan for desired results. One of the decisions that can be helped is, "the selection of right forging temperatures for plain carbon and alloy steels to avoid possible damage by incipient melting or overheating."

A Look at Steel and Iron

Dan Herring
"The Heat Treat Doctor"
The HERRING GROUP, Inc.

Read or listen to this episode of Heat Treat Radio with expert Dan Herring who discusses metals such as stainless steel, tool steel, cast iron, high and low carbon steels, and more. He looks at their production and their uses.

"I wanted to set the stage for it to say that it’s the end-use application by the customer that fuels the type of steel being produced and fuels the form in which the steel is produced," says Herring.

Investment Casting in Turbine Blades

Take a look at how an alumina and silica (quartz) mix are improving metal casting for support rods used in aerospace manufacturing. "LEMA™, a range of proprietary alumina-based materials that provide double the mechanical strength of quartz while providing significantly improved leaching times, compared with typical high purity alumina," provides many benefits for metal casting. Jump into this piece to find out more about this metal casting example.

Direct From the Forge Intensive Quenching

President
Akron Steel Treating Co & Integrated Heat Treating Solutions, LLC

In this discussion, expert Joe Powell says, "My thing is  to develop a robust process that can be applied and implemented using automation and new equipment with the proper pumps and material handling that is all integrated into a seamless process." He plunges in to talking about immediate quenching pieces in water after heat treating and what they are learning at the forge shop.

Heat Treat TV

Here are a few episodes to keep you afloat while moving into deeper waters.

 

Click on these two illustrations to watch the full episodes.

 


Search for heat treat services and products on Heat Treat Buyers Guide.com


 

Forging and Metalcasting Resources To Keep You Informed Read More »

Simulation of Induction Heating of Steel Billets for Forging

This article was written by Dr. Vadims Geza, chief scientist at CENOS. More information on CENOS Platform can be found here.


Induction is becoming an increasingly popular choice for heating steel billets prior to forging due to its ability to create high heat intensity quickly and within a billet, which leads to low process-cycle time (high productivity) with repeatable high quality, occupying minimal space on the shop floor. It is more energy-efficient and inherently more environmentally friendly than most other heat sources for steel billets.

In this article, the author demonstrates a simulation example on how to optimize a progressive induction heating system for a steel billet. The method used is CENOS Platform, a 3D simulation software which focuses specifically on induction heating and uses open source components and algorithms.

CENOS platform is capable of simulating various types of induction heating for forging. It is possible to simulate both static heating and progressive heating where the billet is moved through the coil with constant velocity. In accomplishing this simulation, coil design is not a limitation: both single coil and multi-coil are possible to simulate. Besides the coil, it is also possible to simulate any material and frequency.

The functional performance of the software

CENOS is a finite element method-based, computer-aided engineering desktop software for 2D and 3D physical process simulation and computational modeling of induction heating, induction hardening, brazing, annealing and tempering of steel, aluminum, copper, and other materials.

The simulation process consists of three steps:

  • Choose the workpiece geometry (from built-in templates or create your own CAD file).

  • Define induction heating parameters (frequency, voltage, time, etc.).

  • Run 2D or 3D simulation of your choice.

At the conclusion, results like temperature and magnetic field are displayed in 3D renderings, plots, and more. Apparent power, induced heat, and inductance are logged into an Excel file.

3D Simulation example—comparison of two heating systems

In the simulation, two systems under consideration—two-stage and three-stage systems—in the progressive heating of the billet. The target for the simulation was to reach 2192°F (1200°C) ± 122°F (50°C). To check both systems, the user has to create set up for both of them, set physical parameters (material properties, frequency, current, etc.), and start the simulation.

After the simulation is done, the user will have access to different output variables, including:

  • Temperature distribution
  • Current density and Joule heat distribution
  • Magnetic field lines
  • Total, reactive and apparent power
  • Inductance of the coil
  • Coil current, voltage

In our example of billet heating, it is possible to compare both cases and the output.

 

It is observable how a three-stage system can decrease power consumption and increase the production rate for this specific case. It is also possible to plot the distribution of temperature, Joule heat, magnetic field, etc. Resulting temperature distribution in the billet across the radius is shown in Figure 1. As can be seen, better temperature homogeneity is obtained in the three-stage system.

Figure 1. Temperature distribution along the billet radius at the outlet of the heating system

 

Figure 2. Temperature distribution in the long billet during scanning (progressive) induction heating.

Figure 2 shows how different systems lead to different temperature distribution. In the two-stage system, the temperature required for forging is reached with shorter coils, thus also with smaller scanning speed. This leads to worsened temperature uniformity and smaller production rates. On the other hand, the three-stage system heater gradually increases the temperature of the billet and the resulting temperature difference between core and surface is smaller.

Platform users are free to change all the input parameters and assemble the system of any number of stages required for their process.

Should the same system need to be used for scanning of shorter billets where end effects play a more significant role, it is possible to set up a simulation with a moving billet. An example of temperature dynamics in such simulation are shown in GIF images below:

A simulation with a moving billet in a two-stage system.

A simulation with a moving billet in a three-stage system.

 

Simulation helps make better decisions for production set-up and planning

As demonstrated in the simulation example, it is possible to compare two different systems and get results. The scope and variety of different simulations are unlimited; it all depends on what problem the user wants to solve:

  • Dr. Vadims Geza

    Heating system design—to optimize induction heating performance, improve product quality, and avoid unpleasant surprises related to subsurface overheating

  • The selection of power, frequency, and coil length in induction billet heating applications

  • The selection of right forging temperatures for plain carbon and alloy steels to avoid possible damage by incipient melting or overheating.

 

 

Main Photo Image via CENOS, courtesy of efd-induction.com

Simulation of Induction Heating of Steel Billets for Forging Read More »

Melting Line, Casting Line and Two Forging Presses to be Installed

Production of aluminum forged suspension products will be expanded by Kobe Aluminum Automotive Products, LLC, to meet the rising demand in North America.

Based in Bowling Green, Kentucky, KAAP decided in November 2015 to install a melting and casting line and two forging presses. Mass production is scheduled to begin in summer 2017. When this capital investment is completed, KAAP will have three melting and casting lines and eight forging presses. Production capacity will increase from the current 540,000 pieces per month to 750,000 pieces per month.

In the latest expansion plan announced today, KAAP plans to invest approximately US$53 million (about 5.8 billion yen) to install an additional melting and casting line and two forging presses. Startup is to begin in stages starting from autumn 2018, with completion slated for early 2019. KAAP anticipates hiring 100 more people.

When the latest capital investment is completed, KAAP will have a total of four melting and casting lines and 10 forging presses. Production capacity will increase to 970,000 pieces per month, and employees are anticipated to total 600 people.

KAAP was established in 2003 as a joint venture by Kobe Steel, Mitsui & Co., Ltd. and Toyota Tsusho Corporation to produce aluminum forged suspension products in the United States. Ever since it began production in 2005, KAAP has maintained the top share of the North American market for aluminum forged suspension products.

The United States is the world’s second-largest automobile market, and car production is anticipated to continue growing. Production of approximately 17.5 million cars in 2016 is projected to increase to 19 million cars in 2020.

Owing to their light weight, aluminum forged suspensions contribute to improving the fuel economy of cars. Demand has been rising due to the increasing need to reduce the weight of car bodies in response to environmental regulations.

KAAP began by supplying mainly Japanese automakers in the United States. It now supplies U.S. automakers, too. KAAP anticipates that in the future automakers will use aluminum forged suspension products in a wider range of vehicles.

This latest expansion will further contribute to solidifying KAAP’s position in the North American market for aluminum forged suspension products.

Outline of Seventh Expansion

Extension of building:  About 13,000 sq m (140,000 sq ft)

Equipment:  1 melting and casting line, 2 forging presses, auxiliary equipment

Investment amount:  About $53 million

No. of employees to be hired:  About 100 (when in full operation)

Start-up of equipment:  To be in stages from autumn 2018

 

Melting Line, Casting Line and Two Forging Presses to be Installed Read More »

Jorgensen Forge Acquired

Source:  Forging

Jorgensen Forge, a Tukwila, WA, open-die forger and ring-rolling operation, has emerged from Chapter 11 bankruptcy as one of three companies now owned by CE Star Holdings LLC, a company formed to buy the assets from Constellation Enterprises, which filed for creditor protection in May.

The Seattle-area plant forges low alloy and stainless grades of steel, aluminum alloys, titanium alloys, and nickel-based alloys. Production equipment includes four open-die presses and two ring-rolling mills. It also offers heat-treating and machining, and it has special capabilities for “marine shafting” as well as full testing and inspection services. Its customers are manufacturers supplying aerospace, energy, defense, and general industrial markets.

Read More: Jorgensen Forge Acquired, “Even Better Positioned” by Robert Brooks

Jorgensen Forge Acquired Read More »