Andrew Bassett

Heat Treat Radio #91: Understanding the ±0.1°F Requirement in AMS2750, with Andrew Bassett

Where did the ±0.1°F AMS2750 requirement come from and how should heat treaters approach this specification, an important change that entails major buy-in? Andrew Bassett, president and owner of Aerospace Testing and Pyrometry, was at the AMS2750F meeting. He shares the inside scoop on this topic with Heat Treat Today and what he expects for the future of this standard.

Heat Treat Radio podcast host and Heat Treat Today publisher, Doug Glenn, has written a column on the topic, which you can find here; read it to understand some of the background, questions, and concerns that cloud this issue.

Below, you can watch the video, listen to the podcast by clicking on the audio play button, or read an edited transcript.


 



The following transcript has been edited for your reading enjoyment.

Doug Glenn: Andrew Bassett, president and owner of Aerospace Testing and Pyrometry, Inc., somewhere in eastern Pennsylvania. We don’t know because you’re on the move! What is your new address, now, by the way?

Contact us with your Reader Feedback

Andrew Bassett: We are in Easton, Pennsylvania at 2020 Dayton Drive.

Doug Glenn: Andrew, we want to talk a bit about this ±0.1°F debate that is going on. It was actually precipitated by the column that I wrote that is in the February issue.

I just wanted to talk about that debate, and I know that you’ve been somewhat involved with it. So, if you don’t mind, could you give our listeners a quick background on what we are talking about, this ±0.1°F debate.

Andrew Bassett: To be honest with you, being part of the AMS2750 sub team, one of the questions came up for us during the Rev F rewrite was this 0.1°F readability — wanting to kind of fix this flaw that’s been in the standard ever since the day that AMS2750 came out. With instrumentation, for instance, you have ±2°F (the equivalent would be 1.1°C). At 1.1°C, the question became, If your instrumentation does not show this 0.1 of a degree readability, how can you show compliance to the standards?

Andrew Bassett
President
Aerospace Testing and Pyrometry
Source: DELTA H

Then, it morphed into other issues that we’ve had in the previous revisions where we talk about precise temperature requirements, like for system accuracy testing: You’re allowed a hard number ±3° per Class 2 furnace or 0.3% of reading, whichever is greater. Now, we have this percentage. With anything over 1000°F, you're going to be able to use the percentage of reading to help bring your test into tolerance. In that example, 1100°F, you’re about 3.3 degrees. If your instrumentation doesn’t show this readability, how are you going to prove compliance?

That’s what it all morphed into. Originally, the first draft that we proposed in AMS2750F was that all instrumentation had to have 0.1°F readability. We got some feedback (I don’t know if I want to say “feedback” or "pitchforks and hammers") that this would be cost-prohibitive; most instrumentation doesn't have that readability, and it would be really costly to go out and try to do this. We understood that. But, at the end of the day, we said: The recording device is your permanent record, and so that’s what we’re going to lean on. But we still had a lot of pushback.

We ended up putting a poll out to AMEC and the heat treating industry to see what their opinions were. We said that with the 0.1 readability (when it came to a percentage reading), recording devices would read hard tolerances. So, for instance, an SAT read at 3° would be just that, not "or .3% of reading."

There was a third option that we had put out to the community at large, and it came back as the 0.1° readability for digital recorders, so that’s where we ran with the 0.1° readability.

When it was that big of an issue, we didn’t make the decisions ourselves; we wanted to put it out to the rest of the community. My guess is not everyone really thought the whole thing through yet. Now people are like, ok, well now I need to get this 0.1° readability.

Again, during the meetings, we heard the issues. Is 0.1° going to really make a difference to metal? If you have a load thermocouple that goes in your furnace and it reads 0.1° over the tolerance, does it fail the load? Well, no, metallurgically, we all know that’s not going to happen, but there’s got to be a line in the sand somewhere, so it was drawn at that.

"...that hard line in the sand had to be drawn somewhere..."
Source: Unsplash.com/Willian Justen de Vasconcellos

That’s a little bit of the background of the 0.1° readability.

Doug Glenn: So, basically, we’re in a situation, now, where people are, in fact (and correct me if I’m wrong here),  potentially going to fail SATs or tests on their system because of a 0.1° reading, correct? I mean, it is possible, correct?

Andrew Bassett: Yes. So, when the 0.1° readability came out in Rev F, we gave it a two-year moratorium that with that requirement, you still had two more years. Then, when Rev G came out, exactly two years to the date, we still had a lot of customers coming to us, or a lot of suppliers coming back to us, and saying, “Hey, look, there’s a supply shortage on these types of recorders. We need to buy some time on this.” It ranged from another year to 10 years, and we’re like — whoa, whoa, whoa! You told us, coming down the pike before, maybe you pushed it down the road, whatever, probably Covid put a damper on a lot of people, so we added another year.

So, as of June 30th of 2023, that requirement is going to come into full play now. Like it or not, that’s where the standard sits.

Doug Glenn: So, you’re saying June 30th, 2023?

Andrew Bassett: Yes.

Doug Glenn Alright, that’s good background.

I guess there were several issues that I raised. First off, you’ve already hit on one. I understand the ability to be precise, but in most heat treatment applications, one degree is not going to make a difference, right? So, why do we push for a 0.1° when 1° isn’t even going to make a difference?

Andrew Bassett: We know that, and it’s been discussed that way. But, again, that hard line in the sand had to be drawn somewhere, and that was the direction the community wanted to go with, so we went with that. Yes, we understand that in some metals, 10 degrees is not going to make a difference, but we need to have some sort of line in the sand and that's what was drawn.

Doug Glenn: So, a Class 1. I was thinking the lower number was a tighter furnace. So, a Class 1 (±5), and you’re saying, that’s all the furnace is classified for, right, ±5? So, if you get a reading of 1000°, it could be 1005° or it could be 995°. Then, you’re putting on top of that the whole idea that your temperature reading has got to be down to 0.1°. There just seems to be some disconnect there.

So, that was the first one. You also mentioned the instrumentation. It’s been pointed out to me, by some of the instrumentation people, that their instruments are actually only reading four digits. So up to 99.9 you actually have a point, but if it goes to 1000°, you’re out of digits; you can’t even read that. I mean, they can’t even read that down to a point.

"So, if you get a reading of 1000°, it could be 1005° or it could be 995°."
Source: Unsplash.com/Getty Images

Andrew Bassett: Correct. On the recording side of things, we went away from analog instrumentation. The old chart papers, that’s all gone, and we required the digital recorders with that 0.1° readability, as of June 30th of this year.

Again, the first draft was all instrumentation. That would be your controllers, your overtemps, and we know that limitation. But everyone does have to be aware of it. We still allow for this calibration of ±2 or 0.2%. If you’re doing a calibration, let’s say, on a temperature control on a calibration point at 1600° and the instrument only reads whole numbers, you can use the percentage, but you would have to round it inward. Let’s use 1800°, that would be an easier way to do it. So, I’m allowed ±2 or 3.6° if I’m using the percentage of reading, but if the instrument does not read in decimal points for a controller or overtemp, you would have to round that down to ±3°.

Doug Glenn: ±3, right; the 0.6° is out the window.

Andrew Bassett: Correct. I shouldn’t say we like to bury things in footnotes, but this was an afterthought. In one of the footnotes, in one of the tables, it talks about instrumentation calibration that people need to be aware of.

Doug Glenn: Let’s just do this because I think we’ve got a good sense of what the situation is, currently. Would you care to prognosticate about the future? Do you think this is going to stand? Do you think it will be changed? What do you think? I realize you’re speaking for yourself, here.

Andrew Bassett: I’m conflicted on both sides. I want to help the supply base with this issue but I’m also on the standards committee that writes the standard. I think because we’re so far down the road, right now — this requirement has been out there since June 2022 — I don’t see anything being rolled back on it, at this point. I think if we did roll it back, we have to look at it both ways.

If we did roll this back and say alright, let’s just do away with this 0.1° readability issue, we still have to worry about the people processing in Celsius. Remember, we’re pretty much the only country in the world that processes in Fahrenheit. The rest of the world has been, probably, following these lines all along. If we rolled this back, just think about all the people that made that investment and moved forward on the 0.1° readability and they come back and say, “Wait a minute. We just spent a $100,000 on upgrading our systems and now you’re rolling it back, that’s not fair to us.”

At this point, with the ball already rolling, it would be very interesting to see when Nadcap starts publishing out the audit findings when it comes to the pyrometry and this 0.1° readability to see how many suppliers are being hit on this requirement and that would give us a good indication. If there are a lot of yeses on it then, obviously, a lot of suppliers haven’t gone down this road. My guess is, for the most part, anybody that’s Nadcap accredited in heat treating — and this goes across chemical processing, coatings, and a few other commodities — I think has caught up to this.

Personally, I don’t think this is going to go away; it’s not going to disappear. It’s going to keep going down this road. Maybe, if people are still struggling with getting the types of devices that can have that 0.1° readability, then maybe another year extension on it, but I don’t know where that is right now. I haven’t gotten enough feedback from aerospace customers that say, "Hey, I can’t get the recorder." I mean,

Doug Glenn: I just don’t understand, Andrew, how it’s even physically possible that companies can record something as accurately as 0.1° if the assembly or thermocouple wire is rated at ±2°? How is that even possible that you can want somebody to be accurate down to ±0.1° when the thing is only accurate up to ±2°?

Andrew Bassett: Right, I get that. We can even go a lot further with that and start talking about budgets of uncertainty. If you look at any reputable thermocouple manufacturer or instrument calibration reports that are ISO 17025, they have to list out their measurements of uncertainty, and that gives you only the 98% competence you’re going to be within that accuracy statement.

Yes, I get the whole issue of this .1° readability. There were good intentions were to fix a flaw, and it spiraled. We’ve seen where PLCs and some of these high logic controllers now can show the .1° readability, but they automatically round up at .5°. Are you now violating the other requirements of rounding to E29? Now, I think we’ve closed out the poll in the standard, but you’re right. We were trying to do the right thing. Personally, I don’t think we gave it all that much further thought on that except hey, let’s just make recorders this way and this should be okay.

Doug Glenn: Right. No, that’s good. Let me be clear, and I think most everybody that was involved with the standards are excellent people and they’re trying to do the right thing. There is no dissing on anybody that was doing it. I’m not a furnace guy, right, I’m a publisher — but when I look at it, I’m going: okay, you’re asking somebody to be as accurate as 0.1° on equipment that can only do ±2°. That’s a 4° swing and you’re asking them to be within 0.1°, basically.

Andrew, this has been helpful. It’s been good hearing from you because you’re on the frontline here. You’ve got one foot firmly planted in both camps.

Andrew Bassett: I’m doing my best to stay neutral with it all.

Doug Glenn: Anyhow, I appreciate it, Andrew. You’re a gentleman. Thanks for taking some time with us.

Andrew Bassett: Thanks, Doug. Appreciate it.


About the expert: Andrew Bassett has more than 25 years of experience in the field of calibrations, temperature uniformity surveys, system accuracy testing, as well an expertise in pressure, humidity, and vacuum measurement calibration. Prior to founding Aerospace Testing & Pyrometry, Andrew previously held positions as Vice President of Pyrometry Services and Director of Pyrometry Services for a large commercial heat treater and Vice President and Quality Control Manager for a small family owned business.

For more information: Andrew Bassett at abassett@atp-cal.com or visit http://www.atp-cal.com/

Doug Glenn at Doug@heattreattoday.com


 

Doug Glenn <br> Publisher <br> Heat Treat Today

Doug Glenn
Publisher
Heat Treat Today


To find other Heat Treat Radio episodes, go to www.heattreattoday.com/radio .


Search heat treat equipment and service providers on Heat Treat Buyers Guide.com


 

Heat Treat Radio #91: Understanding the ±0.1°F Requirement in AMS2750, with Andrew Bassett Read More »

Heat Treating System Delivered to Tinker Airforce Base in Oklahoma

HTD Size-PR LogoA heat treat system for use in the aerospace and defense industry was recently delivered to Tinker AFB, OK - USAF.  The system is certified to AMS2750G and will be used to heat treat aluminum as well as other metals for use on military aircraft.

 

Richard B. Conway
Founder/Director/ CTO
DELTA H® Technologies, LLC
Source: DELTA H

DELTA H® and Phillips Federal delivered the furnace to Tinker AFB, which will be used for for heat treating aviation grade aluminum for military purposes. Third party services for calibration and qualification were performed by Andrew Bassett, president of Aerospace Testing and Pyrometry. The certifications for instrumentation, temperature uniformity surveys, and system accuracy testing were completed through ATP’s new Aerospace Compliance Software (ASC) to AMS2750G.

The Dual Chamber Aerospace Heat Treat (DCAHT ®) system has a certified TUS volume of 24” wide, 16" high, 72" long. In addition to aluminum, the system can be used for PH stainless steel aging, as well as titanium and ferrous alloy processes.  Training was provided to several operators, QC personnel, and two “Trainers” qualified to train other operators.

“As an USAF veteran," commented Richard B. Conway, founder, director, and CTO of DELTA H. "[I]t is a deep honor to do all we possibly can to assure that our Warfighters have the finest heat treating equipment available for defending our nation."


Find heat treating products and services when you search on Heat Treat Buyers Guide.com


Heat Treating System Delivered to Tinker Airforce Base in Oklahoma Read More »

4 Heat Treat Radio Episodes To Boost Your Confidence in Compliance

OC Twice a month, Heat Treat Today publishes an episode of Heat Treat Radio, a unique-to-the-industry podcast. Whether it’s AMS2750 or CQI-9, these episodes will boost your knowledge about all things heat treat. Listen to these four episodes to gain confidence in compliance. Enjoy this original content, and happy listening!


Justin Rydzewski
Director of Sales & Market Development
Controls Service, Inc.

Heat Treat Radio: Justin Rydzewski on CQI-9 Rev.4 (Part 1 of 4) – Pyrometry

In this episode of Heat Treat Radio, hear directly from a committee member involved in updating CQI-9. Justin Rydzewski, director of Sales and Marketing at Controls Service, Inc. sheds some light on the automotive equivalent to AMS2750: CQI-9. From translation issues and formatting to new process tables and caveats regarding thermocouples, this episode of Heat Treat Radio provides all the necessary information heat treaters need to use the new revision. It's about more than just pyrometry; it's also about heat treat system assessment and heat treat operation.

To get the run-down on CQI-9, listen to this episode of Heat Treat Radio.

"How like is one test to the next one?  What is your means of collecting data and what is your response plan when that data is unfavorable?  Having that predetermined, so that you’re not doing in on the fly, can be incredibly helpful."

Heat Treat Radio: Andrew Bassett on AMS2750F (Part 1 of 3)

Andrew Bassett, President, Aerospace Testing and Pyrometry

In this three-part episode, Andrew Bassett of Aerospace Testing and Pyrometry discusses all things AMS2750F. Questions on thermocouples, calibrations and thermal processing classification, SATs, or TUSs? This series of Heat Treat Radio episodes has the answers.
In this first episode, Andrew focuses on thermocouples and sensors and the different thermocouple types that AM2750 Revision F addresses compared to past revisions. The use of nickel/nickel-moly thermocouples and the use of resistant temperature devices are just two of the additions found in Rev. F.

To get an overview of the changes to AMS2750 made in Revision F, as well as to hear a bit about the process for writing the specification book, listen to this series of episodes on Heat Treat Radio.

"I’m an end-user, so I’m able give my input and say, 'Hey, this doesn’t make sense.  What you want to add into the spec is not real world.' It’s nice that people such as us get involved with these specifications."

Heat Treat Radio: Reimagining Furnace Compliance with C3 Data’s Matt Wright

Matt Wright
Chief Marketing Officer,
C3 Data
Source: C3 Data

The future of compliance could be in the palm of your hand. Matt Wright, chief marketing officer at C3 Data, describes how C3 Data has encapsulated everything required to be AMS2750 or CQI-9 compliant into one platform: a user-friendly system that can run on a smart phone. No more clipboards, spreadsheets, or post-it notes. Using optical character recognition, heat treaters can complete SATs in real-time. With QR codes, operators can scan thermocouples and access the appropriate table within a specification book.

To learn more about what C3 Data is doing to make compliance easier, listen to this episode of Heat Treat Radio.

"When I look at our industry, one of the things that is the biggest challenge is the flow of information — getting information from where it resides to where it needs to be in the format that it needs to be."

Heat Treat Radio: Justin Rydzewski and James Hawthorne on CQI-9 Rev.4 (Part 3 of 4) – Process Tables & New Resources

James Hawthorne
Corporate Heat Treat Specialist,
Acument Global Technologies

There's more new material in CQI-9 Rev. 4 than just pyrometry updates. James Hawthorne of Acument Global Technologies, zooms in on changes to CQI-9's process tables and new resources. One of these new resources, a glossary of terms used within the document, was created specifically because of end-user requests. Maintenance request forms, helpful illustrations, and informative figures are just a few other new resources added to the latest version of CQI-9.

"Read the document.  Read as much of it as you can and try to understand as much as you possibly can."

To hear more about what's new in CQI-9 Rev.4, listen to this episode of Heat Treat Radio.


.

Search for heat treat solution providers and suppliers on Heat Treat Buyers Guide.com


 

4 Heat Treat Radio Episodes To Boost Your Confidence in Compliance Read More »

12 of 38 Aerospace Furnaces Brought Up to Spec

HTD Size-PR Logo

Andrew Bassett, President, Aerospace Testing and Pyrometry

A pyrometry compliance company in the heat treat industry recently reported the successful launch of a program to bring 12 of 38 heat treating furnaces up to pyrometry compliance standards for a large manufacturer with a focus in the aerospace industry located on the West Coast. Aerospace Testing & Pyrometry (ATP), an Easton, Pennsylvania-based pyrometry compliance company, reported earlier this week on LinkedIn that their West Coast Division had started assessing the heat treat furnaces for this large manufacturer with a focus in the aerospace industry.

ATP personnel involved in the project included Ivan Mayorga, John Hollman, and Anthony Gomez.

ATP did not disclose the name of the aerospace manufacture for whom they were doing work nor did they comment on the status of the other 26 furnaces not being serviced by ATP.

To see the LinkedIn post from which this press release was taken, click here.


Find heat treating products and services when you search on Heat Treat Buyers Guide.com


 

12 of 38 Aerospace Furnaces Brought Up to Spec Read More »

Aluminum Producer Readies Lab and Heat Treat Furnaces

HTD Size-PR Logo

Andrew Bassett
President
Aerospace Testing and Pyrometry
Source: Aerospace Testing and Pyrometry

A large aluminum producer in the U.S. Midwest received assistance from a North American pyrometry service provider to ensure their heat treat and laboratory furnaces were ready to run.

After the visit from the pyrometry service provider, Aerospace Testing & Pyrometry, Inc. (ATP), four laboratory furnaces were certified and three of four heat treat furnaces were wired and ready to go. One 40 point survey, two 35 point survey and one 25 point survey on a forty foot tall drop bottom furnace.

"We love our Pyrometry Services," commented Andrew Bassett, president of ATP. "All the certifications will be run through our newest venture, Aerospace Compliance Software."


Find heat treating products and services when you search on Heat Treat Buyers Guide.com


 

Aluminum Producer Readies Lab and Heat Treat Furnaces Read More »

Heat Treat Radio (Special Video Edition): Heat Treat Tomorrow – Experts Look Forward 10 Years

Doug Glenn, publisher of Heat Treat Today, moderates a panel of 5 experts who address questions about the next 5-10 years in the heat treat industry. What are the trends and what should you prepare for. Experts include Peter Sherwin, Eurotherm by Schneider Electric; Janusz Kowaleski, Ipsen Group; Andrew Bassett, Aerospace Testing & Pyrometry; and Dan Herring, the Heat Treat Doctor from The HERRING GROUP, Inc.

You can view this special video edition of Heat Treat Radio by clicking the button below.

Heat Treat Radio (Special Video Edition): Heat Treat Tomorrow – Experts Look Forward 10 Years Read More »

Heat Treat Radio #43: Andrew Bassett on AMS2750F (Part 3 of 3) — TUS Specifications

Heat Treat Radio host Doug Glenn continues his conversation with AMS2750F expert Andrew Bassett. This final discussion revolves around changes in temperature uniformity survey (TUS) specifications.

Below, you can either listen to the podcast by clicking on the audio play button, or you can read an edited version of the transcript.

 


Click the play button below to listen.


The following transcript has been edited for your reading enjoyment.

Doug Glen (DG): In this episode, Andrew Bassett and I have our third and final conversation about AMS2750F.  Andrew Bassett is president of ATP and directly contributed his expertise to the latest revisions of AMS2750.  If you haven’t heard the previous two episodes, you can find them by Binging or Googling Heat Treat Radio or by simply typing www.heattreattoday.com/radio into your browser.

In the first episode, you and I did some talking about just the AMS2750 generally; what it was, how it’s done, who was on the committee obviously, the fact that it’s not just a minor rewrite, but that it’s a major rewrite and then specifically in that first episode, we talked about thermocouples and calibration.  Once we were done with that, we went into the second episode where we talked about system accuracy tests.

Andrew, again, tell our listeners who was involved on the committee.  I know that from our perspective, the good folks over at GeoCorp had James LaFollete on the committee and I know Doug Shuler from Pyro Consulting was on there, but who else was on the committee that was responsible for putting this revision F together?

Andrew Bassett (AB):  We had Marcel Cuperman from PRI (Performance Review Institute).  He is one of the lead staff engineers for the NADCAP heat treat task group.  We had Doug Matson from Boeing.  Doug Matson, after the release of Rev F went into retirement.  He has still been very active on any questions that have been arising with the Rev F.  He’s retired, but he’s still in the loop with the specification.  We had Brian Reynolds from Arconic.  Again, we were looking for various people within the industry, so Brian Reynolds gave us a perspective from the raw material suppliers.  We also had Cyril Vernault from Safran Aerospace.  We wanted some European influence on the specification, and he is also the task group chairman for heat treat.  We had a good, well rounded group of guys that were experts on this, to try to get this next revision put together.

DG:  And yourself, of course.  Let’s not forget that.

AB:  I always like to say that I wrote the good stuff in there.

DG:  Before we jump into TUS specifics and some of the major changes there, I want to hit just briefly on training.  You and I were talking about this before we hit the record button.  The fact of the matter is, there are several different training courses out there.  Obviously, these three episodes ought to be helpful to you.  A direct call to your cell or to Aerospace Testing and Pyrometry probably wouldn’t be a bad idea if somebody needed help with it.  Does ATP also provide a training course?

AB:  Yes, we do.  We’ve always prided ourselves on providing AMS2750 training.  Our training has always been customized to what our customers requirements would be, so every course is not the same.    We like to take it to more than just AMS2750.  You have to remember, there are other aerospace primes out there that have their own pyrometry requirements.  For instance, GE Aviation has their own pyrometry requirements, P10TF3.  Rolls Royce has their own pyrometry requirements.  Or Pratt & Whitney might have some other things that need to be addressed.  We actually sit down with our customers prior to any training and kind of take out the information that is needed, and then we perform the training onsite at the client’s facilities.  So that if any other questions arise – “Hey, you’re talking about the SAT stuff” – then I can say, “Hey, let’s go for a field trip” and we can walk right out to the customer’s equipment and kind of demonstrate how to do, let’s say, a proper SAT or proper calibration.  Again, we’ll cover various different specifications.  For instance, one thing we like to do is find out what types of heat treating they’re doing.  If they’re strictly a vacuum heat treating, I’m not going to talk about any of the aluminum requirements.  There are some pyrometry requirements when it comes to aluminum, but we’ll talk about vacuum gauge calibrations, which is not covered under 2750, but is covered under AMS2769.  Again, each one of our courses is customized to what our client’s needs are.

So, yes, they can feel free to reach out to us.  There is myself and Collin Thomas who is an ex-NADCAP auditor for the two instructors for the course, and we’re more than willing to help out with that at any time.

DG:  And just so everyone knows, at the end of this podcast, we will mention a couple of other companies and resources that you can go to for training on AMS2750F.  I would like to mention, though, just a little self-serving note – and I did this with Google just a minute ago, though I don’t know that it will work on everybody’s location and what not… I Googled “AMS2750F” and Heat Treat Today came up as the second item with an article that we posted back on July 21st called AMS2750F expert analysis of which, Andrew, you were one of the contributors.  We had five contributors, I believe, to that article, Doug Shuler being one of them, Peter Sherwin from Eurotherm being another, yourself being one and we had two others, Jim Oakes from SSI and Jason Schulze.  I think you had to answer two or three questions and we compiled that.  So that’s also a good resource to go to, if you have a moment to do so.

Let’s jump into temperature uniformity surveys (TUS).  As we’ve done in the past, basically what we’re doing is asking you, “what were the major changes in this area?”  So we’ve broken TUS into five basic questions.  Let’s hit the first one now.  Looking for the major changes in modifications and repairs section, tell us about that.

AB:  In Rev E (the previous revision), there were two sections broken out called furnace modifications and furnace repairs.  We put in there the caveat “but not limited to the following things.”  If you replaced a hot zone in a vacuum furnace, or you changed thermocouple locations, these would trigger a major modification where you would have to do an initial uniformity survey.  We basically took out the repairs function and just left in modification.  If any kind of preventive maintenance, or some sort of maintenance function that is done, that would be considered a repair, it’s going to be up to the user’s quality organization to determine if any other testing is going to be required.  For instance, if they replace a door seal around a door, quality is going to have to get involved and ask, “Do we need to do a uniformity survey?”  What I always tell suppliers out there that are compliant with this is, get with your maintenance team, because the maintenance team typically will know whatever repair they did will have a major impact to maybe a uniformity survey.  At that standpoint, repairs will have to be documented, as always, and then quality is going to have to sign off and ask, “Do we need another calibration, an SAT or a TUS?”  We’ve put the onus back on the users now to determine if a test needs to be conducted.  And then they’re going to have to defend that if they have an audit.

It was kind of silent in the previous revisions of the spec, but it was kind of mentioned that when you move a piece of thermal processing equipment from one corner of the building to the other corner of the building, that you were going to be required to do an initial uniformity survey.  I brought up to the team, that these days, they actually make furnaces and ovens with wheels on them.  This is for cellular manufacturing.  If they have wheels on them to be moved to different locations, it again will have to be on the onus of the quality department to determine if another uniformity or initial survey needs to be done.  Maybe they do a quick test on the furnace to make sure it’s within the same realm as the previous testing.  We did say that initial TUS may be waived if the furnace is designed to be portable.

Some of the other major changes/modifications were people were always thinking if you changed your control thermocouple, when you replace it with a new one, that you have to do an initial survey.  We always said no, you don’t have to do that as long as you put it back in the documented location.  But I did see a problem with this when if they change the type of sensor, basically the thickness of the sensor.  Maybe they went from a 3/16th sensor down to a 1/8th sensor.  Well the 1/8th sensor is going to be more sensitive to temperature change and that could have a major impact on the uniformity.  Or if they went from a hot junction that was not exposed to an exposed junction, this again increases the sensitivity.  So we added in that as a major modification.  If you do change that type of scenario on your thermocouples, then yes, you’d better do an initial uniformity survey.

And lastly, since we’re getting more and more advanced control systems, if you change the PLC logic, the PLCs that control a vacuum furnace or any other type of thermal processing equipment, then you better do an initial uniformity survey.  So we kind of beefed up a little bit of the major modifications to address some of the newer technology that is out there.

DG:  You said a lot of that was up to the quality department?  Is that true, for example, when you went from a hot junction to not?  Is that still up to the quality department?

AB:  No.  That’s now been changed under the major modifications that would trigger an initial uniformity survey.  Changing from different types of sensors is not a repair, that is a modification.

DG:  How about the way vacuum furnaces and the TUS’s need to be performed there?  What were the major changes?

AB:  There was really only one major change that we changed for when you conduct a survey on a vacuum furnace.  Before, all you had to do was just do your typical uniformities within your temperature ranges for your qualified range of use and your vacuum pressure.  If you had a diffusion pump, it had to get below one micron and then just do your survey.  But then, I think it was Dr. Shuler, that brought up the idea that said, if people use a back fill gas or use partial pressure, maybe they just need to have one test under partial pressure.

At first, we got a lot of push-back from the suppliers on that saying this is going to cost them extra money and they would have to do an extra test.  And we said, no, this is just part of your routine temperature uniformity survey schedule.  We’re just saying, at least on an annual basis, you choose a single operating temperature within a defined partial pressure range that you use during production.  We just want a survey done that way.  You get to choose what gas you’re using, if you’re using argon or nitrogen.  The thought process behind this was, if you had a needle valve that maybe was leaking and creating a cold spot in your furnace and you didn’t know about it, it’s more of a preventive thing to ask are those needle valves leaking and are you getting a cold spot in your furnace that you don’t know about.  That’s all we’re asking, is just for one survey to be done in any one of your single set point temperatures with any partial pressure gas in the range that you define as your partial pressure.  Once we explained it that way, we were able to get over that hump and move forward.

DG:  It wasn’t as onerous as it initially sounded, apparently.

AB:  Yes, I think the wording in the original draft sounded like it was going to be an extra survey, and I can understand the pushback from the suppliers.  We explained that it was not an extra survey, it’s just one during your regular routine survey.

DG:  Right.  It replaces another one.

AB:  Correct.

DG:  Question 3.  Location of the test thermocouples when you’re under 3 cubic feet.

AB:  This was something that I always had an issue with in AMS2750, in the previous revision.  How it was stated was that when you have a furnace less than 3 cubic feet, you can do a survey with five sensors.  And it said that the five sensors shall be placed in the corners.  Well, in a cylindrical furnace, you have eight corners, so what five corners do you choose?  My understanding was that when NADAP PRI was teaching their pyrometry course, it was basically the central plane of the furnace.  So you would have two thermocouples in the front that were in the center plane and then two in the back in the center plane and one in the center.

And I said, that doesn’t really work so well because you’re not really getting what’s on the top of the furnace or the bottom of the furnace.  So, what we ended up doing was putting some new diagrams in the specification that showed that you’re going to go opposite corners.  Let’s say you’re going to put one thermocouple in the top left corner in the front and then diagonally across from that will be one in the bottom right corner.  Then in the back you would reverse those.  So we are covering the top and bottom of the furnace.  And the last thermocouple will be in the center.  We spelled out a little bit better way of testing these smaller furnaces.

Source: ATP

In a cylindrical furnace, it is stated that those thermocouples should be 180 degrees apart.  Again, the NADCAP course would basically put five thermocouples in the center plane of a cylindrical furnace.  And we said, no, we want two thermocouples on the top directly 180 degrees apart from each other and then two on the bottom, again, 180 degrees apart from each other, but they should be offset 90 degrees from the top one.  You’re getting a better test of your full work zone dimension.  I’ve always been doing these testings with these small furnaces in this method because that’s actually an older requirement from an old Boeing specification; the old BAC5621 actually spelled it out this way.  We kind of adopted the old Boeing requirement of the smaller furnaces to show a better test for your small furnaces now.

Source: ATP

DG:  Right.  And let’s be clear, that is for a 3ft3 or smaller furnace.  I assume, over 3ft3, you’ve still got nine thermocouples.

AB:  Yes, greater than 3ft3 and less than 225ft3, you’ve still got the nine sensors.  Once you get above 225 ft3, then the formula is in place in 2750F that spells out how many more thermocouples.  I believe we don’t allow it to go past 40 thermocouples in some of those big monster furnaces.

DG:  Let’s talk about aluminum for a little bit here.  We’ve got radiation test surveys in aluminum furnaces, anything above 800°F; let’s talk about that.

AB:  This is actually a surprise that this didn’t get some more pushback when we were putting the drafts out there.  Originally, in previous revisions, it said all aluminum solution heat treating furnaces where the heat source is located in the wall, you had to do what’s called a radiation test survey.  But we’ve changed the requirement to say all aluminum alloy thermal processing equipment used above 800, also with the heat source located in the furnace wall, ceiling or floor.  This is a game changer because this will now put those aluminum vacuum braze furnaces into play.  This was typically only a requirement for solution heat treating of aluminum alloys, but now it’s going to be for aluminum brazers.  I’m very curious of how this is going to work.  A radiation test survey is basically you have to have one 6061 aluminum panel that is 12 inches square with a test thermocouple peened into the middle of it and there is one panel for every 10 cubic feet of wall area.  Basically, what we’re looking for is if there is any kind of direction radiation of heat to an aluminum panel as your panels are going to get extremely hot.  What they’re looking for is eutectic melting.  All aluminum heat furnaces, it’s required by AMS2770 which is the aluminum processing spec that says if you’re processing aluminum, there can’t be any direct radiation to the parts.  But in a vacuum furnace, how is it heated?  Direct radiation.  I’m very curious as to how this is going to play out for those suppliers.  Again, I was really surprised there wasn’t a whole lot of pushback from the aluminum vacuum braze facilities that have these types of furnaces that are now going to be required to do this test.  It’s going to be interesting how that plays out once 2750 is in full force for everybody.

DG:  Yes, and I guess we ought to say that it is not always radiation in a vacuum furnace.  If you don’t have back fill gases, ok, it’s going to be all radiation.  But if you’ve got some convective heat going on with back fill gases, that is possible.  It doesn’t change the point that we’re making here.  This is something for people to be aware of if you’re working with a vacuum furnace above 800°F, you’re doing any type of aluminum, then you’ve got a new requirement to do this radiation test.

AB:  Yes.  It’s the change of the words of ‘solution heat treating’ to ‘all aluminum alloy thermal processes.’

DG:  Last question of the five.  Documentation requirements.  You mentioned there have been some changes.  Tell us about those.

AB:  We made a few changes to the documentation requirement.  Basically from the standpoint of Rev E, we left everything from the original requirements in there, but people were unfamiliar with right after the section that talked about documentation.  (The funny thing is we had to change it from reports to documentation.  There was somebody that said we don’t want to call it a report because that quantitates that it has to be all in one package, we want to call it documentation.  So we appeased that one.)  Anyway, in Rev E, it was not part of the documentation records, but should be accessible on site, which were the control instrument tuning parameters, the PIDs or the proportional band reset rate, depending on the instrument manufactures, that those had to be documented for each thermal processing equipment.  We thought this is being missed.  There are a lot of places that I’ve been to where they don’t even know what the tuning parameters are.  So we said from now on you’re going to have to document that in your TUS reports.

It also required to have a diagram of your TUS thermocouple location.  That has always been a requirement, but we also now require you to show where the control thermocouple is placed and if you have any recording sensors.  If you have type A instrument A or C instrumentation to have the high and low, those would have to be denoted on the diagram for part of the documentation package.  We want to make sure that the supplier is aware that we don’t just need to see where your nine thermocouples are located, we also need to see where the control is and any applicable other sensors in the furnace that qualify for A, B or C.

We also want to find out, too, what type of atmosphere is being used in the furnace.  Is it air?  Is it a vacuum?  Are you putting it under carburizing?  You now have to list the atmosphere that was done during the testing as well.  And then we’re also saying that the TUS test instrument that you’re using, you have to let us know what the correction factors are, even if you electronically apply them to the TUS instrument.  You’re allowed to put in the correction factors prior to starting the TUS for your test instrument.  A lot of people are saying it’s already been put into the recorder, I don’t need to document it.  But we’re saying we still need to know what that correction factor is.  So you need to document what those correction factors are.

There are two other things that are new to the documentation requirements.  If you have types A or C instrumentation, again with the hot and cold thermocouples placed in there from the last uniformity survey, there shall be an analysis done to make sure that those locations have not changed.  There are some requirements in Rev F that say if your uniformity survey is half your uniformity tolerance.  In other words, if you’re testing for ∓10 and your final results come out less than ∓5, you can make an easy statement that my survey is within ∓5.  No relocation of my hot and cold sensors are required.  But you have to do an analysis of those two sensors for types A and C.

[blockquote author=”Andrew Bassett” style=”1″]We also want to find out, too, what type of atmosphere is being used in the furnace.  Is it air?  Is it a vacuum?  Are you putting it under carburizing?  You now have to list the atmosphere that was done during the testing as well.[/blockquote]

The other change deals with more of shaker type furnaces or continuous type furnaces, we call them continuous or semicontinuous furnaces.  You have to list out what the traversing speeds are during your uniformity survey, maybe whatever your bump rate is for your shaker or the traverse rate.  Then you’re going to have to recalculate what your work zone is.  With a continuous type furnace, obviously your work zone will shrink the faster the belt goes through the furnace.  There needs to be a recalculation of the work zone dimensions based on the survey based on what the belt speed should be.

And then lastly, like we’ve done with all the other documentation, if your service is being performed by a third party, the quality organization of the third party must also approve the reports as well.

Those are the major changes when it came to the documentation for temperature uniformity surveys.

DG:  Basically, we’ve hit on three major areas.  The first episode – thermocouples and calibration, the second episode – system accuracy tests, and this episode – temperature uniformity surveys.  Are there any other odds and ends that you think our listeners should know about?

AB:  Absolutely.  There are a couple last minute things towards the end of this specification that already passed all the testing requirements.

The biggest pain when it came to Rev E is that we had the requirement for rounding, and that was to the ASTME29 method.  That caused a lot of problems.  I think we put a number on all the thermocouple suppliers because typically the thermocouple suppliers – when they’re doing their calibration of thermocouples – put everything into Excel.  Well, Excel rounds .5 up, like we all learned in grade school.  But, E29 doesn’t like that.  They like to have if your next significant digit is odd, it rounds up; if it’s even, it stays the same.  That put a little hamper on all of the thermocouple guys and we kind of didn’t think that one through.

So, now we’ve changed it in Rev F.  The methods that you can use are ASTME29 using the absolute method, that still can stay the same, or you can use an equivalent international standard such as ISO 8001 rule B which is .5 round up, or you round to any commercial spreadsheet, in other words .5 round up.  As long as you have documented procedures and you have to use it in a consistent manner.  I should say we’ve relaxed the rules, so now you can choose what kind of rounding method you want to use.

We wanted to make sure that we spelled out, too, that all the tolerances in 2750F, if you look at Rev F compared to Rev E, all the tolerance requirements, we used to say plus or minus 10, now it says plus or minus 10.0.  It’s an absolute.  If you have a survey that you do that is 10.2 and you want to try to round that down, you can never round anything back into compliance.  If something does fall out of tolerance by a 10th of a degree, or whatever, you cannot using the rounding function to bring it into compliance.

We addressed a hole that was left in Rev E on your test interval extensions.  In previous revisions, we forgot about adding bimonthly and every four months, how many days you can go past an extension for a due date, so we finally addressed that in this revision.  It used to be Table 10 and now it’s Table 25.  The only thing that’s added onto this is if you do use an extension for any reason, there must be a written justification approved by the user’s quality organization.  It can be as simple as: my test came due on Sunday, but I came in and did the test on Monday.  You’re just going to have to write a note saying the due date was Sunday and you did it on Monday.  You just have to write some justification of that.

Lastly, and I think this is a big thing, as well, is under the quality assurance provision.  It is basically the section that says what happens if you have a pyrometry failure and so on.  We didn’t change anything in there except two years after the release of Rev F, any third party pyrometry service organization must have a quality system approved to ISO 17025. Also, the scope of accreditation shall include laboratory standards and/or the field services applicable.

Third party service providers, two years after the release, will now have to be 17025 accredited.  If they are, there is also no procedural oversight from the supplier.  For example, since we’re 17025 accredited for our laboratory, we actually hold two different accreditations, one for our laboratory and one for our field service work for calibrations for uniformity surveys and system accuracy testing.  Now, since we are third party accredited, our clients will not be required to have any oversight on us.  Personally, I don’t think that’s the best option; I think the supplier should still be able to audit us and look at our procedures to make sure it’s compliant with the industry standards.  But according to Rev F, there is no more oversight if we’re third party accredited.

I wasn’t a big fan of adding this in.  Again, you would think people that are 17205 like ourselves would be happy to have this in there as it might weed out some other companies, but I’ve actually worked with some really good smaller shops – a two-man father and son that’s located in New York, and then a gentleman in California that is just a single guy, and these guys are very versed in the specification and do thing right.  Unfortunately, now they’re going to have to be 17025 accredited.  I talked to one of them and he said, “This may put me out of business. I don’t know if I can afford swinging this.  I do a good job.”  And I said, “I know, I’m trying to fight for you on this,” but it ended up going in.  At least we put the caveat that they have two years to get it down, so it’s not something immediate.

DG:  Yes, that is the danger when you start requiring certain accreditations, licenses or whatever.  It’s typically the small guy that takes the beating.  That’s too bad, but that’s the way it is…  I shouldn’t be so flippant about that, should I?  It is too bad!

AB:  I really struggled.  Originally, the first draft was going to be immediately, and I said, no, let’s put a moratorium on it for at least two years so people can queue up for that.

DG:  I guess the moral of the story for the end user is within two years you need to be asking your third party survey companies/accreditation folks, whoever is coming in to do your pyrometry and whatnot, if they have this 17025.

Anything else?  Any other odds and ends?

AB:  The last thing I want to add about the 17025 is that this is only for third party suppliers.  We’ve received questions like, We do our pyrometry internally, do I have to go get 17025?  No, you don’t.  It’s only for third party suppliers.

DG:  Let’s wrap up with a couple of quick things here.  Training.  If there are listeners out there who want additional training.  We talked at the beginning of this episode about what Aerospace Testing and Pyrometry, your company Andrew, what you guys can do.  I’m going to list a couple of other places, I believe, have training, and then if you know of any others you’re comfortable mentioning, please feel free to do so.

I do know, you mentioned, PRI does some sort of training here on this.  I believe, a good friend of Heat Treat Today, Jason Schulze up at Conrad Kacsik, have something, and I’m sure they can do custom.  I don’t know if they have standard courses or not, but I’m sure they can do some custom stuff.  And, I believe that Super Systems also has some sort of training on this.  I believe GeoCorp does, or will.  But those are the only sources I know.  Correct me if I’m wrong on any of those and let me know if there are any other places that people could get training.

AB:  I wasn’t familiar with Super Systems or GeoCorp, but everybody is getting onto this bandwagon.  But the other course I would also know of is Doug Shuler’s Pyro Consulting as well.  He does teach an advanced pyrometry course.

DG:  First of all, Andrew, we really appreciate your time doing these three episodes.  If people want to get a hold of you, what are you comfortable giving out?  We don’t want to give out your cell phone, unless you’re comfortable with it, but certainly emails and things of that sort.

AB:  They can give me a call on our office line which is 844-828-7225.  If you press 1, that’s supposed to actually ring my cell phone, but sometimes it doesn’t and sometimes it does.  You can try the office line or you can reach me through email which is abassett@atp-cal.com or you can hit us up on the website www.atp-cal.com and you can just hit one of the emails of support and let me know what you’re looking for from pyrometry training, or anything else for that matter, and I’ll be more than happy to reach out to you.

DG:  If you’re interested in reaching out to Andrew, please try the above.  Of course, I’m always willing to take emails and put you directly in touch with Andrew, if you’d like.  You can do that by emailing doug@heattreattoday.com.

 

 

 

Doug Glenn, Publisher, Heat Treat Today

Doug Glenn, Heat Treat Today publisher and Heat Treat Radio host.


To find other Heat Treat Radio episodes, go to www.heattreattoday.com/radio and look in the list of Heat Treat Radio episodes listed.

Heat Treat Radio #43: Andrew Bassett on AMS2750F (Part 3 of 3) — TUS Specifications Read More »

Heat Treat Radio #40: Andrew Bassett on AMS2750F (Part 2 of 3) — SATs

Heat Treat Radio host Doug Glenn continues his conversation with AMS2750F expert Andrew Bassett. This time the pair discusses Revision F changes to System Accuracy Tests (SATs).

Below, you can either listen to the podcast by clicking on the audio play button, or you can read an edited version of the transcript.

 


Click the play button below to listen.


The following transcript has been edited for your reading enjoyment.

DG:  We are back today for our second episode of a three-part series with Andrew Bassett. Andrew is the president and CEO of Aerospace Testing and Pyrometry, headquartered out of Bethlehem, PA, with offices across the county. They do a lot in pyrometry services and related things.  Andrew also had a seat on the committee that was responsible for – that owned – the AMS2750 revision F, so he can speak with firsthand knowledge of some of these changes.

If you are interested, you can listen to the first part, which dealt with the major changes in thermocouples and sensors, major changes in instruments, major changes in calibration, and then we also spent a little bit of time right at the end of the last episode talking about offsets.

AB:  Yes, and the offsets were one of major changes that we, as a team, did a very good job of spelling out the new requirements for the two different offsets: modification offsets and correction offsets. So that’s a valuable tool to go back and take a look at.

Episode 1 of 3 of AMS2750 series

DG:  If you didn’t catch that first episode, you can certainly do that.  You can go to www.heattreattoday.com, jump back into the radio section which is under heat treat media on our main navigation tab, and check that out.  It would be very worthwhile.

Before we jump into the topic for today, which is the system accuracy tests (SATs), I wanted to ask you a question about this revision.  Often, the AMS folks will come out with a minor modification, or not a huge modification, let’s say; other times, it’s pretty much a re-write, end to end.  How would you classify this revision F?  Where does it fall on that scale?

AB:  It leans towards the side of a complete re-write.  I think one of the big things that changed was obviously the number of pages of the document; it jumped from roughly 43 pages up to 54 pages.  We expanded the number of tables that were from revision E, which had 11 tables, into 25.  This was to do some more clarifications of the requirements, or to spell things out a little bit more.  I would be leaning on the side of this as being more of a complete re-write.  There’s going to be quite a bit in there that is the same old stuff from the previous revisions, but there is quite a bunch of new stuff.

I would lean towards saying that this was a complete re-write and that’s why there were no change bars associated with the spec.  Typically, when these specs get revised, the change bars show you where the changes are, but since this was more of a re-write, we left out the change bars this time around.

DG:  Instead of having someone go in and “cheat” and just look at the change bars, you’ve got to pretty much start from the beginning and go straight through.

Where do you see some of the major changes in rev F on the overall or the resident SAT?

(source: Andrew Bassett, ATP)

AB:  Not a whole lot completely changed on the resident sensors.  We still allowed for the same sensors as we did in the previous revisions, where you are limited to different types of sensors based on the temperature ranges, that they were going to be seeing.  For instance, if you’re above 500 degrees Fahrenheit, then you’re going to be limited to type N, S, R or B thermocouples, and if you’re above 1,000 degrees, they would have to be what’s called a nonexpendable thermocouple, the metal sheathed type thermocouples.  We left that stuff alone.  But one of the things we did allow for with the new resident sensors, which I believe is a benefit to the supplies that are using the resident sensors, is that we’re going to allow for some things.  Let’s say you have an over temperature sensor, and you also want to use that as your resident sensor.  Now you’re allowed to do that as long as you follow the guidelines that say a resident sensor has to be replaced.  If it’s a base metal thermocouple it has to be replaced every 90 days, or on a quarterly basis.  If it is a noble metal, one of the type R, S, or Bs, it would have to be replaced or recalibrated every six months.  We did allow for cases where you have an extra sensor that is being used in dual roles (that is, a resident sensor that also functions as a high limit protection), then you can go ahead and do that.  I think that that is something that is beneficial to the suppliers, in that we don’t have to go out and put a third sensor into a furnace or drill a hole to put our resident sensor in.

The one thing that we really want to emphasize with these resident sensors is that their position is to be verified during the installation process and when it’s replaced.  When a resident sensor is in a fixed position, we want to make sure it is not moving.  Typically, you see a compression fitting that is going to tie the thermocouple down and lock it into place.  We want to make sure it is not moving between tests. So, now when you replace these things, you must verify the positioning when you put it in on a replacement basis.

Also, it’s always been the requirement to put the thermocouple in for the 90 days or 180 days, and leave it in there.  We’re going to allow you to take it out between the tests, but only as long as it is verified after every single time it’s replaced.  I’m not a big believer in that; just because someone from Quality doesn’t come out and verify it doesn’t mean that it could be in the wrong position.  But we are allowing you to independently move this thing in and out between the test if you want; that is acceptable. You still have the same replacement periods as quarterly and 180 days depending on the sensor type.  We did give a little leeway on that from the resident sensor standpoint.  Again, we didn’t make a whole lot of changes on it.  We just wanted to spell out the little bit of differences allowing for other types of sensors to be used, or have a dual purpose, I should say.

DG:  Let’s move on to the second issue, and that is the alternate SAT process, which I know has sparked a lot of questions with the articles we’ve had on our website.  We’ve always had people asking about what they can do, what they can’t do.  Let’s talk about that.

AB:  Sure.  The previous revision in rev E was kind of this dark black hole of what the alternate SAT process was all about.  Finally, it was more spelled out in what’s called the “PyrometryReference Guide.”  That’s the document that NADCAP puts out, the “pyrometry for dummies,” so to speak.  This is basically their interpretation of AMS2750.  And then kind of evolved that into what’s called a “heat treat audit advisory.”  There were different interpretations of this alternate SAT which were too conflicting to the suppliers.  We said, “Let’s make it more clear-cut of what the expectation of this alternate SAT process is.”

First off, the process applies to load sensors that are used once, or for any other type of sensor control or recording sensors that are replaced at the same, or less frequent than the normal, SAT intervals.  One of the things that was in the previous version, which we kept, is that the calibration must be performed from where you connect the sensor.  Then, once you do that calibration, one of the following three options have to be met. Option 1 is that we take the sum of the sensor calibration error. That’s when you first complete calibration from the point of connection and run through the whole system, including the connections, the lead wire, and the instruments. Then, you document those results and algebraically add that to the correction factors or the errors of the wire either being used or replaced more frequently, and if the sum of those two correction factors are within the allowable SAT tolerance of AMS2750, you would have to document that.  And that’s the first option; it’s basically a math function; it’s sitting at your desk and taking the calibration report of your process instrumentation, typically from the recording, and adding it to the wire that’s being used.  If you fall within that certain table of AMS2750 for SAT tolerances, you’re good to go.  It’s kind of a “desk SAT,” as they call it.

The other way of doing this is to use the appropriate sensor and instrument calibration correction factors.  You can either program them into the system or apply it manually as allowed by the limits in AMS2750.  Basically, you’re taking the correction factors for the instrumentation that you have calibrated and the sensors that you have calibration “certs” on, and programming that into your system. Again, as long as that meets within the applicable table of AMS2750, that is the second option that is allowed.  Because you’re basically using the correction values from the calibration reports for your instruments and your thermocouples, you will always be within your SAT requirements.

The third option allows you to do a couple of things.  For one, you can limit your instrumentation calibration error. A company comes in and does your calibrations, and the supplier says they don’t want any of their channels to be more than one degree out of calibration, so, you adjust the instrument calibration to be within that limit. Or, you can specify when you purchase thermocouples wire that you won’t take any thermocouple wire that is no more than two degrees out throughout the whole range you need them calibrated.  In that instance, you will always be compliant to the requirements of the SAT tolerances.  So, if you restrict the calibrations and you restrict the error on the thermocouples, then you will always meet that requirement.  All you would have to do is show, for documentation purposes, the instrument calibration reports that say it is all within 1 degree and all of the wire certifications are within two degrees, and that will always meet the most stringent requirement for SAT tolerances.  As long as that documentation is there, you will be able to show compliance to the requirement.

[blockquote author=”Andrew Bassett” style=”2″]“Before, there was no requirement of how to document all this, so we actually put in some hard requirements down on how to document the alternate SAT requirements.”[/blockquote]

Those are the more defined options you have.  Before, if you gave it to 100 different people to read, and they said, “I don’t know what to do with this information.”  Well, now we’ve put out what we actually meant and defined it a little further now.

DG:  Great, so that covers the first two that we wanted to talk about – the overall of the resident SAT and now the  alternate SAT – so let’s wrap up with this SAT waiver, which is obviously of interest.

AB:  First, I want to jump back real quick into the alternate SAT.  We finally added some documentation requirements.  Before, there was no requirement of how to document all this, so we actually put in some hard requirements down on how to document the alternate SAT requirements.  You have to list out the thermal processing equipment (you have to identify which furnace you’re doing this on), what is the sensor system that’s being tested, and what sensor or roll of wire that’s being replaced.  You also have to identify the reason why you’re doing the SAT; for example, because you replaced the thermocouple after every run, something simple like that.  If you’re doing the full calculation method, then you’d have to show all your calculated methods.  We did finally put some teeth in to help you document this well.

DG:  Now, the SAT waiver.  Tell us about it.

AB:  In all my years out in the field of pyrometry, I rarely found many suppliers that did this SAT waiver correctly.  We didn’t change a lot of the basics of the requirements, but we did change some new requirements regarding how to gather your data to make sure that you do this correctly.  We still require that if you’re using noble metal load thermocouples, which are the platinum based thermocouples, you replace and recalibrate them on a quarterly basis.  If you have base metal load thermocouples, if they are expendable, they should still be just a single use.  If they’re nonexpendable, sheath type thermocouples, they shall meet the requirements of Table 6 in AMS2750F, and that gives you guidelines of how often those need to be replaced.

If you have any kind of observations that are made and recorded on at least a weekly basis and which reveal any unexplainable difference between observable readings and readings of two recording sensors, this is where the change really occurred on those two additional sensors.  We spelled out that these weekly readings have to be conducted at one production setpoint and measured within the five minutes at the end of the production soak period.  What this weekly log is supposed to be doing is to compare one sensor against another sensor that you’ve identified.

Some people have used the control sensor as the one sensor and, let’s say, the high limit thermocouple as the second sensor.  These have to stay within a two-degree relationship from the last successful survey, and so people were wondering when they were to take the weekly reading.  We decided to spell this out a little bit further: this weekly reading must be done at production setpoint and measured within the minutes of the production soak period.  In other words, you can let your thermocouples soak out for a period of time, during which you can complete your comparison check.  These have to be within two degrees of the relationship determined at the most recent TUS temperature and at the nearest temperature tested during the most recent TUS.

For example, let’s say we do a survey at 1600 degrees and the control is reading 1600 degrees and my over temp is reading 1602.  Next week, we come along and we’re running a job here at 1500 degrees and my control is reading 1500 degrees and my over temp is reading 1501, you’re good.  You’re within that two-degree relationship.  That’s where this two-degree relationship needs to occur.

But the one thing that we’ve done now is we’ve asserted that the two sensors have to be different types.  Before, you’d have, let say, two type S thermocouples in your furnace; you can’t have two type S thermocouples now.  You have to make a different thermocouple type for the relationship.  This is more to catch any drifting of your thermocouples over time.  For instance, if you had a type S thermocouple in your furnace as your control, you’re going to have to be limited to either a type B or type N thermocouple as that secondary sensor that you’re doing your relationship check with.

That’s what a big change is.  Before people just used the two same sensors.  What we were concerned about is – and let’s say those two thermocouples were made from the same lot of material – that there is a good chance that when the thermocouples start to drift, they’re going to drift in the same direction.

Again, we did put some similar restrictions on resident thermocouples.  For the example I used, if you had type S control thermocouple, you’d be limited to type B or N, but we also allow for R as that extra thermocouple.  But R and S are very similar in the chemical composition makeup, so we don’t allow an S to go against an R and vice versa, in that case.  If you had a control thermocouple that was K, then really any other thermocouple that is allowed once you’re above 500 degrees you’re limited to the B, R, S, and N.  Actually, these requirements are exactly the resident sensor requirements as well.

DG:  Anything else on that SAT waiver?

(source: Andrew Bassett, ATP)

AB:  We do now have some documentation requirements, too.  Again, before there were no requirements there.  Now you have to list the equipment that you’re doing the waiver on, you have to identify the control sensor, what type of sensor it is, plus what the additional sensor is used for the sensor relationship test.  You have to list out the date of when the control and the additional sensor to be used, when they were installed, and when they were replaced or recalibrated.  You have to list out the run number and date, so that when you are completing the production cycle on a weekly, you have some kind of easy identifier to tell you that it was done on run #ABC123, and the date was 9/8/20, so we can go back to the records and verify it.  Date and temperature of the recent TUS and the documentation, that weekly log, are necessary; we need to see that weekly log as well.

We finally put some teeth into the requirements of the SAT waiver.  I don’t think it’s going to be a big change for a lot of the suppliers out there.  They will have to change over that one sensor, but, for the most part, I think we tweaked it enough where we felt more comfortable, especially changing those two different sensors so that we didn’t have drift occurring at the same time.  That was our biggest concern as a committee.

DG:  So, you’re basically trying to ensure reliability and you’re going to actually test for what you’re testing for.  That makes sense.

We talked briefly about the overall or resident SAT, the alternate SAT, and the waiver.  If you, the listeners, have questions, be sure to email them into us and we can potentially get Andrew to respond to them.  Send those to htt@heattreattoday.com.  We’ll leave Andrew’s information at the end of each of these podcasts.

Andrew, I’ve got a final question for you, not dealing with any specific aspect of the revision, but just to give people a sense of the amount of time that folks in your shoes, people that have invested time or actually on the committee: How much time do you think you’ve invested in the rev F portion of AMS2750?

AB:  It was a long process.  To put it in perspective, we developed our sub team and had our first meeting back in October of 2017, during one of the NADCAP meetings. We were kind of on a fast-track to get this spec revised and put out there.  It wasn’t actually released until June of 2020; so three year plus is a fast-track in the eyes of the AMS world.  We did meet at least six or seven times a year, either during an AMEC meeting or during one of the NADCAP meetings, and we had numerous Webex calls.  When we actually met face to face, they were good 8 – 10 hour sessions of hammering out the spec.  Then, we would take it back to our own groups and muddle through what we discussed.  It was a long period of time.  I would hate to put an hour on it.  I wish we’d gotten paid for that!  Taking into account what our company is and what we do, we have to live, breathe and eat this spec, day in and day out, for our customers.  I just wanted to be a part of the process of getting this documentation, so the world can understand the issues in pyrometry.

DG:  I actually have one other question for you.  You told us in the first episode how you got onto the committee.  Are they always looking for people to participate on the committee, or do they carefully fence that and only invite in certain types?

AB:  Anybody can be a member of AMEC.  So anybody that wants to get involved with the revisions of any of these specifications, including the AMS2750, they’re more than welcome to show up at an AMEC meeting, get involved,  and volunteer to get involved with the specifications.  I remember my first meeting where the chairman said, “You’ve got to get on this 2750 team.  And, oh by the way, we’re thinking about writing some other specs that we’re going to throw you under the bus for.”  They’re looking for young blood to get involved with these specifications and be a part of it, so yes, anybody can get involved with these specifications.

DG:  If you are listening and you’re one of those people that might be interested in participating in that, you can certainly get a hold of Andrew.

This was our second part in a three part series.  Our last episode will be on temperature uniformity surveys, the issue of rounding, and quality assurance provisions.  If you’d like to learn more or reach out to Andrew, you can go to www.atp-cal.com and look at their ‘about our team’ section in the main navigation bar.  I’d also be happy to receive emails on behalf of Andrew.  My email is doug@heattreattoday.com. Thanks for listening.

 

 

 

 

Doug Glenn, Publisher, Heat Treat Today

Doug Glenn,Heat Treat Today publisher and Heat Treat Radio host.


To find other Heat Treat Radio episodes, go to www.heattreattoday.com/radio and look in the list of Heat Treat Radio episodes listed.

 

Heat Treat Radio #40: Andrew Bassett on AMS2750F (Part 2 of 3) — SATs Read More »

Heat Treat Radio #38: Andrew Bassett on AMS2750F (Part 1 of 3)

In this first of a three-episode series on AMS2750F, Heat Treat Radio host, Doug Glenn, discusses Andrew Bassett of Aerospace Testing & Pyrometry discusses the significant changes in the specification in the areas of thermocouples and calibrations.

Below, you can either listen to the podcast by clicking on the audio play button, or you can read an edited version of the transcript.

 


Click the play button below to listen.


The following transcript has been edited for your reading enjoyment.

Doug Glenn (DG):  This past June AMS2750 released revision F, but what does that mean to you?  We caught up with AMS2750F committee participant, Andrew Bassett, to find out.  Our conversation about this revision will stretch over 3 episodes with the first dealing with thermocouples and sensors, the second dealing with system accuracy tests and the third, temperature uniformity surveys.  This first episode will be all about thermocouples, sensors and calibration.

Andrew, welcome to Heat Treat Radio.  We're excited to have you to discuss this AMS2750F revision.  If you don't mind, why don't you take a minute and introduce yourself to our listeners?

Andrew Bassett (AB):  I'm president and owner of Aerospace Testing & Pyrometry, headquartered out of beautiful Bethlehem, Pennsylvania.  I've been in the aerospace pyrometry field for going on 30 years, after graduating from college at Davis and Elkins college in Elkins, West Virginia with a degree in communications.  I discovered by myself that I would end up starving in radio broadcasting, which my field was, and got involved with a company called Pyrometer Equipment Co., a family owned pyrometry business.  They needed some help as they were expanding operations, and it was the father of my girlfriend (at the time)—now my wife--who had started that business in 1956.  That's how I got my break into pyrometry.

Davis and Elkins College
(photo source: dewv.edu)

This was also the time when NADCAP was starting to put its foothold on the aerospace industry. I kind of self-taught myself in the ways of aerospace pyrometry.  I spent many years getting to know the specification and understanding what the requirements were, dealing with the auditors themselves, and having them teach me about what they look for during audits. I've taken that knowledge with me for the last 26 years.

After I left the family business, I worked for another start-up company in the field of pyrometry, left that company, and worked for a large commercial heat treat company based in the Southeast as their pyrometry director.  At that time I started to feel like I wanted to start my own pyrometry business.  So, in 2007, I started Aerospace Testing and Pyrometry (ATP).  I was doing it part-time for a while, but then in 2009, I decided to go full force.  To this day, it is not just me anymore: there are 16 of us in the company which is spread from coast to coast to take care of pyrometry services as well as other things we have branched off in with ATP.  I call it our four headed monster.  We have our pyrometry services, which includes calibration and testing of thermal processing equipment.  We do get involved with other testing as well, like vacuum measuring systems for vacuum furnaces.  We've also done humidity pressure gauges and gotten involved with different types of calibrations as well. Additionally, we have our laboratory, which is based in Ohio, where we do calibrations of secondary standards and field test equipment.  Finally, we have our consultant and training arm, with which we have a full-time ex-NADCAP auditor on staff who is able to assist our customers with pre-assessments of NADCAP audits.

AMS2750 is the main aerospace material specification in pyrometry.  If you actually try to do a Webster's Dictionary search on pyrometry, you'll find it is a made-up word.  We've interpreted it as the calibration and testing of thermal processing equipment; that is, heat treating equipment and any type of thermal processing will fall under this specification when it comes to testing.

AMS2750 has also now been adopted by others; it is not just a heat treating specification anymore.  Two years ago, the FDA adopted AMS2750.  Those facilities that are heat treating medical implants or dental drill bits will now have to follow the requirements of AMS2750.  The one industry that walked away from this specification is the automotive industry.  They have their own requirements called CQI-9.  I always make a joke that the one good thing about AMS2750 in dealing with aircraft is that we don't see planes falling out of the sky, but we do see a few more recalls on automobiles and automotive parts.

DG:  Just as a little preview for our listeners, Heat Treat Radio will be doing probably a two to four-part series, similar to what we're doing here with Andrew, on CQI-9, so stay tuned for that.

Andrew, how exactly did your company get involved with AMS2750?

AB:  So, they had started to revise—and this goes back several revisions ago—revision C to create revision D.  Revision C, I always said, was the Bible:  You can give it to 100 different people and you would get 100 different interpretations.  It was a much-needed change that was needed in revision D.  At this time in my career, I only had about 8 years experience in pyrometry, but I had to live and breathe this document day-in and day-out.  So, I approached several members from the AMS2750B team to get involved with the spec.  I didn't have the great experience like some of the other members of the team who were from Boeing, Bodycote, and Carpenter Technology and other folks, and they said, “Well, we kind of have our team set into place.  We'll ask you questions if we need anything.”  I didn't hear much from them, but one of the team members did keep me posted of some of the changes.

Then when it came to the rev. E, I heard rumblings that they were going to revise the spec again, and it was at this time that I decided to attend an AMEC meeting.  AMEC is basically the think tank of all of the AMS specifications that are dealt with.  AMEC stands for the Aerospace Metals Engineering Committee.  The various segment specifications fall under various commodity groups, I believe it's A thru H.  AMS2750 is actually owned by committee B for NSAE.  So AMS guys write the specifications, the commodity committees own the specifications and that's how this process works.

I did attend my first AMEC meeting and the chairman at the time was a gentleman from Lockheed Martin.  Anybody can join the AMEC meetings and be a part of them, but at that meeting he asked who I was and my background.  I told him and said that I wanted to get involved with this specification and he said, “By all means you need to get involved with this specification.  Since you do this for a living, I think we'd like to have that perspective.”  So that's how I got on the AMS2750 team for rev. E.  I'm still young enough, and dumb enough, to keep going on to this revision of rev. F and will probably be around for the next revision after that.

I did have my inputs in both the specs.  We had a great team for rev. F which included myself, Doug Matson from Boeing, who has since just retired, Marcel Cuperman, who is a staff engineer for heat treating for PRI NADCAP, Cyril Vernault from Safran Aerospace, (he is also the heat treat task group chairman in NADCAP), Brian Reynolds from Arconic, Douglas Shuler from Pyro Consulting and a NADCAP auditor, and James LaFollette from GeoCorp.  Our team has consisted of people across various parts of the industry.  From Arconic’s standpoint, we were looking from the raw material producers.  Obviously, with GeoCorp, it was from the thermocouple side of things. And from Cyril Vernault based in France, we wanted the European influence of what's going on over there.  So, a good, broad range of people from various sectors of the industry are involved with the specification.

[blocktext align="left"]“I'm an end-user, so I'm able give my input and say, ‘Hey, this doesn't make sense. What you want to add into the spec is not real world.’”[/blocktext]One of the things I always had in my mind when I first got involved with the specification was that the specifications were written by the aerospace "primes," but that's not the case; it involves people, such as myself, who are end-users of this specification.  I'm an end-user, so I'm able give my input and say, “Hey, this doesn't make sense.  What you want to add into the spec is not real world.”  It’s nice that people such as us get involved with these specifications.

DG:  Let's talk about the main sections of this specification.  If you break them down, what are the main sections?

AB:  There are really only five sections of the specification.  You can break it down into thermocouples, calibrations and thermal processing classification, SAT (system accuracy testing), TUS (temperature uniformity surveys), and the very last five or six paragraphs are on the quality provisions (what happens if you have a failed test).  Those are the 5 main sections of AMS2750.

DG:  So focusing on the topic of this episode, thermocouples and sensors, let's highlight some of the profound changes that have been made in rev. F.  First, what are the biggest changes regarding thermocouples and sensors?

AB:  The bigger changes relate to how we address some different thermocouple types that were not addressed in previous revisions of the spec.  In rev. F, we added and gave a thermocouple designation, type M, to Nickel/Nickel-Moly thermocouple.  These thermocouples have been around for a long period of time.  We do know that they're being used in  aerospace application, especially at very high, elevated temperatures.  It's more cost-effective than going into the platinum or the noble-based thermocouples.  Type M was one of the newer thermocouples we added.

We also addressed the use of RTDs, which is, again, something that we had seen in the aerospace industry for quite a while. As I mentioned before, this is also a crossing over from the heat treat world into the chem-processing world.  A lot of these chem-processing tanks use RTDs to measure chem temperatures, so we thought we better address these type of thermocouples.

RTDs in AMS2750F explained (photo source: Andrew Bassett, ATP)

Then we also added refractory thermocouples, which people weren't all that familiar with, unless you're dealing with the hot isostatic pressing (HIP) process.  We're seeing more and more of the HIP furnaces out there now, with all of the additive manufacturing that is going on.  We see people adding HIP furnaces everywhere, and a lot of those HIP furnaces are coming with type C thermocouples, because they are rated for these elevated temperatures that the HIP processes do.  I think the type C thermocouples are rated close to 4,000 degrees Fahrenheit.  We had to add some of these extra sensors that have been around for a while, but we wanted to bring them out a little bit further.

One of the other changes that was pretty significant—though I don't think it will affect the industry all that much—is that now we require thermocouples to be accurate to what's called “special limits of error.”  The previous revision allowed for two different types: You were allowed special limits of error, which the accuracy is + or –2 degrees Fahrenheit, or .4% of reading.  That was only required for a system accuracy test sensor or for a sensor that was being put in a Class 1 or 2 furnace.  All other sensors, such as TUS of load sensors, and class 3-6, we allowed for standard limits of air, which was + or –4 or .75% of reading, whichever is greater.

We did some polling of major thermocouple suppliers out there. With my personal experience and that of some of the other people on the committee, we kind of said, “Hey, you know what? No one really orders the junky stuff, the standard limits; everyone orders special limits of error.”  James LaFollette said, “Come to think of it, I don't think I've ever seen a purchase order that says give me the crappy stuff.  We all order special limits.”  So that's what we discovered – that no one was ordering the bare minimum because there wasn't a price difference between the two.  Everyone had already been ordering the good stuff, so we just made that a little bit of a tighter requirement.  Again, I don't think it's going to affect any suppliers out there.

I think the biggest change, when it came to thermocouples and sensors, was a big restriction that we put on what's called “expendable test sensors.”  This was dealing with the base metal thermocouples.  Base metal thermocouples are type K, type J, type T, type N, type M, and a couple other type base metals.

Click to read the Heat Treat Today article on thermocouples.

Primarily in the heat treating and thermal processing world, you pretty much see the K, J, N, and T.  We had done some studies as a sub-team within 2750 to look at the drifting of thermocouples, that is, where thermocouples start to lose their accuracy.  In the previous revision, we had some provisions in place that allowed people to use these expendable thermocouples that were attached to a temperature uniformity survey rack and were preserved.  They could use them up to three years or 90 uses when below 1200 degrees.  We thought that seemed kind of excessive on a 20-gauge wire that is covered with fiberglass coating.  They're probably not going to hold up, but maybe we should see if there is any drifting of these thermocouples.  So, we had one of the major thermocouple suppliers, Cleveland Electric Lab, run some drift studies on type K thermocouples, and we found out that these wires were actually starting to drift after three or four runs.  The drift study included a cycling test where they ran it up to temperature and back down 30 different times.  We asked, “Why don't we try to simulate how these thermocouples are going to interact coming in and out of thermal processing equipment?  Why not pull them out every single time and do it that way?”  Again, we found that thermocouples were drifting even further and even quicker.

At this point we decided we better put a restriction on this, and that gave the biggest uproar regarding the reuse of these thermocouples.  Previous drafts before the final release of the spec was, if it's used above 500, your expendable wire is one and done above 500 degrees.  A lot of the suppliers out there came screaming and said this is going to cost us millions and millions of dollars more in thermocouples.  But we stood firm and said, “Hey look, if you're using these test thermocouples to validate your furnaces, either through a system accuracy test or uniformity survey, you really do not know what your error of that wire is after the first use.”

Most of the major thermocouple suppliers will even state on certifications that they will only guarantee accuracy at the time of calibration.  Once it goes in a furnace, atmosphere and different conditions of the furnace will affect the wire.  We stood our ground, but we ended up backing off a little bit.  If you were using them strictly below 500, you're allowed to use them for 3 months (90 days) and you're going to have to keep a log.  If you're using them between 500 and 1200, we're going to allow you to use them for 90 days, but now you're only restricted to five usages.  And then again, above 1200, you use it once and throw it away.  That was probably the biggest hassle, trying to get that.  We did finally compromise on that three month or five usages.  I do see the burden on the suppliers because they were used to three years or 90 usages, so now it's down to three months or five usages.

DG:  I see on the chart that I've got here in front of me that base metal types of M, T, K, and E are all the three month or five use, but you've also got base metal type J and N which is three months or 10 uses.  But all of them, above 1200, one and done.

Table for SAT and TUS Sensor Reuse (photo source: Andrew Bassett, ATP)

AB:  Correct.  That's one of the things I was trying to explain to some of the suppliers that were having heartache about the original change of 500 one-and-done.  We only left it to the types M, T, K, and E; we always left this out of types J and N.  My personal experience with type J has been (and we've switched over to type J wire a while ago for testing below 1200 degrees),that it's a little bit cheaper in price than the type K wire, and there was always this allowance for doubling the amount of usage if you just switch over to type J or type N.

DG:  We have a few significant changes in the area of calibrations.  What's another area of change in this section?

AB:  One of the big things which really surprised me when we wrote it into the standard, but which was kind of overlooked by some of the suppliers, was the requirement of test instruments to have a .1 readability.  So when it deals with test instruments and also now data acquisition systems. Now, if you have a chart recorder that is on your furnace (most people are going to data acquisition systems, some sort of SCADA systems), that recorder must have a .1 readability.  That caused an uproar since that may create big changes.

Now, we don't put out these changes because we think it's a good idea; AMEC is data driven.  The big thing with the .1 readability is that we were actually fixing a flaw that has been in the spec since the first day it was written, when it was just rev. A.  We allowed for percentages of readings for your accuracy requirements.  Let's say, for instance, on your instruments that are on your furnace calibrated controller an if it's in Fahrenheit, you're allowed + or –2, but if it's in Celsius, it has to be + or – 1.1.  And if your instrumentation doesn't show .1 readability, how can you show compliance?  That question is one of the reasons—that is, fixing a flaw in specification.

(photo source: www.atp-cal.com/laboratory/)

But we also allow for percentage of reading, which is + or –2 Fahrenheit or 1.1 Celsius or .2 % of reading, whichever is greater.  Let's say you have a calibration point at 1400 degrees, you're actually allowed  an error of 2.8.  If you can't show that decimal point readability, how can you show compliance?  That was one of the biggest issues.

Originally, the first draft said all digital instruments need to be .1 readability and then we backed that off to only say that the data acquisition system had to be .1 readability.  At the end of the day, the recorders or the data acquisition system is the proof.  As long as that shows the tenth of degree of readability, and it meets the requirements, then you're good to go there.

We did look at how many customers are already using digital data acquisition systems through NADCAP.  There's actually a NADCAP checklist question that talks about chart speed verification, and if you answer that “N/A” then you obviously have digital data acquisition.  At that time, we did look at that data and 78% of the NADCAP heat treating suppliers out there already had paperless systems.  On top of that, two years after the release of 2750F, so as of June 29, 2022, you're not allowed to have paper chart recorders anymore.  Everything is pushed to a digital data acquisition system 2 years after the release of this spec.  I'd say, that's another one of the bigger changes when it deals with the instrumentation.

So the biggest changes are the .1 readability for your chart papers and the two years after the release requirement to go with a paperless system.

DG:  Now question three: What are the changes that were made in the calibration section?

AB:  There were a few changes when it came to calibration.

One of the things we added this time was the calibration of timing devices.  A lot of facilities have timers or clocks that they're basing their times and temperatures, and again, there was no requirement to calibrate this.  Therefore, we added a whole section on calibration of timing devices.

There was some push back on that.  Certain people, who have suppliers who use certain control operated by computers and which are always synchronized in their server systems, asked if they were going to have to go out and buy calibrated stopwatches and sit at their PC to make sure it's within these new requirements.  We finally said, no, you don't have to do that, but if you can procedurally address how that whole system works—that your server is always verified—you would be okay as long as you procedurally address that.

Again, we were loose on the accuracy requirements.  Some of these external devices that you have only need to be calibrated every two years.  Comparing it to people's standards that they use—we personally do calibration of timers as well, and our standards are required to be calibrated every two years—we ended up just tossing these devices away because it's more expensive to send them back for recalibration than it is to buy new ones.  So, we gave some of the suppliers an easier way out.  But we just wanted to address, again, something that has never been brought up in the specifications, which, though not technically dealing in the pyrometry world, does sit on furnaces. We need to get these things looked at every now and then as well.

[blocktext align="left"]“So, we gave some of the suppliers an easier way out.  But we just wanted to address, again, something that has never been brought up in the specifications, which, though not technically dealing in the pyrometry world, does sit on furnaces.”[/blocktext]Some of the other changes come in the documentation.  We did change some things that need to be required for the documentation of your calibration results.  One of the things was that we need you to document the sensor that you're calibrating for that particular piece of equipment.  For instance, you have a vacuum furnace and most vacuum furnace control sensors are a noble metal type S or type R thermocouple, but then the load thermocouples that measure the parts inside might be set as type K or type N.  We just want you to denote that the control system is type S and the load thermocouples are type K.  Not real big game changers, it's not going to cause too many issues out there from the supplier base, it's just adding basically another column in your calibration reports to say what sensor you're calibrating.

We didn't go too overly crazy on the calibration portion.  The one thing, kind of in the calibration field, is we did add a new instrumentation type.  When you look at thermal processing equipment, it's broken down into two different sections.  You have your furnace classification which is your uniformity tolerance and then you have what's called your instrumentation type.  You have class 1 - 6 and you have instrumentation A – E, now instrumentation D+.  This was more for Safron Aerospace.  Cyril Vernault was very adamant that we add this D+ instrumentation because Safron's specifications state that they want this extra sensor that is basically 3 inches away from the controlling sensor, so they can measure if there is a big difference between these two sensors to determine if there is drifting of your thermocouples.  So we added this new D+ instrumentation.  We didn't realize this was big over in Europe, but it was nice to have someone like Cyril say that a lot of European suppliers use this and that he’d like to see it in AMS2750.  Again, having this broad range of people on the specification helped us find out what's going on in different parts of the world.

DG:  How about we close with the fourth part of thermocouples?  Could you delve into the expanded section on offsets?

AB:  Absolutely.  Always one of the areas, especially when it comes to NADCAP audits, is the use of offsets.  We basically broke it down into two different types of offsets that are allowed.  We have what's called a correction offset, which is basically either a manual or electronic means to bring an instrument back to a nominal temperature.  And we have a modification offset, which is just the opposite.  It takes either a manual or electronic offset or a shift in the temperature to bring it away from nominal.  There are different ways that people have used these offsets.  For instance, let’s say you go into a facility and you're doing your calibration of a controller, and the instrument is off linear by two degrees.  People would use the offset to bring the instrument back a nominal temperature.  Instead of maybe doing a full factory calibration, they would just go into the instrument, hit some magic buttons, and (say I need to offset it -2 because my instrument was two degrees high) set a two degree correction offset.

A modification offset generally is only going to be used for when you're doing a temperature uniformity survey.  Let's say it is skewed to one side of your temperature median. For instance, (I always like to use this in my pyrometry training class), we know temperature uniformity and I go in and do a temperature uniformity on your furnace at 1000 degrees.  I have to hold it to be + or –10.  When I get my final results and I look at everything with all my calculations, I have a survey that actually comes out to be 992 – 998 degrees.  It's well within the + or –10, but it’s skewed down to the lower end.

So, there's different things you can do to try to correct that. Maybe change air flow, or thermocouple location, but a lot of time, what happens is you get a furnace that was made in the 1940s and you're trying to make it comply to 2020 specifications.  The only thing you can do is go in and shift the controller away from the nominal to actually make it read hotter.  In this example that I'm giving you, what I would do is go in and put in an electronic offset and tell the controller to read colder now, as I will drive more heat into the furnace.  So, I go in and put a -5 degree offset into the control and now, in theory, when you do the survey,  you're shifting that temperature up by five degrees.  Now if you look at that split, it would be 997 – 1003—it’s more centered around your set point temperature.  That would be what's called a modification offset.  You're taking that TUS distribution and skewing it to better center around the set point.

We really did some “spelling” on this: we put some maximums, the amount of offsets that are allowed as we don't want people to go too crazy on these things, so we did put some offsets in there.  But I think we did a great job of trying to spell out what these offsets are being used for, how you're supposed to document them, and make sure that you're consistent with your practice every time.  Again, procedures will have to be written to fully understand how you're going to do the offset.  Am I going to put it electronically?  Am I going to do a manual offset, just shift my temperature up five degrees because I know my furnace is cold by five degrees?  I think with that whole new section in there, I think we did a good job of spelling that out for the suppliers.

DG: Thanks so much, Andrew for joining us on the podcast.

AB: Thanks for having me, Doug. Looking forward to chatting more with you about AMS2750F.

You can reach out to Andrew Bassett at https://www.atp-cal.com/contact/.

Doug Glenn, Publisher, Heat Treat Today

Doug Glenn, Heat Treat Today publisher and Heat Treat Radio host.


To find other Heat Treat Radio episodes, go to www.heattreattoday.com/radio and look in the list of Heat Treat Radio episodes listed.

Heat Treat Radio #38: Andrew Bassett on AMS2750F (Part 1 of 3) Read More »

AMS2750F: Expert Analysis

AMS2750F, a rewrite of the specification that covers pyrometric requirements for equipment used for the thermal processing of metallic materials, was released at the end of June. For this Technical Tuesday feature, Heat Treat Today asked a few experts in the aerospace industry to share their insights of this much anticipated revision that helps to better clarify issues with the previous revision. Specifically, Heat Treat Today wanted to know what they perceived to be the top 2-3 most important changes in revision F; what companies should do to prepare for these changes; and additional thoughts about the revision as it relates to aerospace heat treating.

Industry experts who contributed to this Original Content piece are Andrew Bassett, president, Aerospace Testing & Pyrometry, Inc., Jason Schulze, director of Technical Services; Special Process – Metallurgy, Conrad Kacsik Instrument Systems, Inc., Peter Sherwin, Global Business Development manager for Heat Treat, Eurotherm by Schneider Electric, Jim Oakes, president, Super Systems, Inc., and Doug Shuler, lead auditor, owner, Pyro Consulting LLC.


Andrew Bassett was on the subteam for AMS2750F as well as the previous revision AMS2750E and has been a member of AMEC and SAE Committee B since 2006. He shares some “inside baseball” background about this four year process, “The AMS2750F subteam utilized the Nadcap Pyrometry Reference Guide, the Nadcap Heat Treat Audit Advisories that pertained to Pyrometry, and the collective experience from the sub-team which dealt with the previous revision issues and problems. The AMS2750F sub-team had a broad range of backgrounds, with representatives from Boeing, Safran, Arconic, GeoCorp Inc, Nadcap-PRI, and Aerospace Testing & Pyrometry.”

What do you believe to be important changes in revision F?

Jason Schulze, Director of Technical Services; Special Process – Metallurgy, Conrad Kacsik Instrument Systems, Inc.

Jason Schulze comments on offsets saying, “Offsets have often been a confusing subject throughout the years. How they are applied, removed and documented has caused confusion and has been a source of Nadcap findings. With the changes to the offsets section of AMS2750 in the new revision, these issues will be greatly reduced. Offsets have now been split into two categories; correction offsets and modification offsets. It will be important for suppliers to understand and implement the new requirements as well as use the same verbiage as this will hopefully alleviate further confusion.”

Andrew Bassett, President, Aerospace Testing and Pyrometry

Andrew agrees this is an important change regarding the offsets and further clarifies, “A “Modification Offset” is when an instrument is purposely, either through electronic means or manual means, shifts the accuracy away from the nominal temperature. This is typically done to “center a temperature uniformity” that may be skewed in one direction or another. The modification offset, when used properly, will shift the temperature uniformity more towards the set point of the thermal processing equipment. A “Correction Offset” is used to bring the instrument back to the nominal temperature. As always, a well defined procedure will be required on how the “Correction Offset” and “Modification Offset” will be introduced into your system.”

One of the biggest changes that caused a lot of controversy was the restricted re-use of expendable test thermocouples,” Andrew notes. “The AMS2750F subteam provided studies and data that showed that there was considerable drift of certain types of base metals thermocouples, especially when it came to Type “K” thermocouples. The previous revision of AMS-2750 already had restrictions on these types, but after providing data of the drift of these thermocouples, the team felt further restrictions were required for Expendable Base Metal SAT & TUS Sensors. Section 3.1.7.3 describes the limitations of these type thermocouples. Types “M”, “T”, “K” & “E” shall be limited to 3 months or five uses, whichever occurs first between 500F and 1200F (260C and 650C) and is limited to single use above 1200F (650C). Types “J” and “N” shall be limited to 3 months or ten uses, whichever occurs first between 500F and 1200F (260C and 650C) and is limited to single use above 1200F (650C).”

Peter Sherwin, Global Business Development Manager for Heat Treat, Eurotherm by Schneider Electric

Peter Sherwin comments on instrumentation, “From an instrument perspective our no.1 focus is the instrument accuracy specification. This has not changed for Field Test or Control and Recording Instruments (now in Table 7), however the impact of the decimal place for digital recorders could cause some issues for less precise instrumentation. In 3.2.3.1 All control, recording and overtemp instruments shall be digital 2 years after release of AMS2750F – this was not a surprise, and today’s overall cost (paper, pens, storage etc.) of paper chart recorders cannot match their digital counterparts. Digital time synchronization (3.2.3.19) is also sensible to ensure you have an accurate time record across a number of Furnaces/Ovens and charts – we are used to this for other regulations (e.g. FDA 21 CFR Part 11) and offer a SNTP/Time Synchronization feature in our Recorders.”

Jim Oakes, President, Super Systems, Inc.

Jim Oakes shared his pleasure with section 3.2.3.12, “I was happy to see the document address integrated recording/controlling data.  It states in section 3.2.3.12 when the control and recording system is integrated such that the digitally displayed control value and digitally recorded value are generated from the same measurement circuit and cannot be different, it is only necessary to document a single displayed/recorded value for the control reading.  This is happening through direct communications, so what you see on the controller is what you are recording electronically.  This saves a step and eliminates the need for additional documentation.”

Doug Shuler, Lead Auditor, Owner, Pyro Consulting LLC

Doug Shuler cites the auditor advising piece, “The top of the list has to be the overall progress we made by incorporating auditor advisories and pyrometry reference guide FQS into the body of the specification so users don’t have to ask themselves “What did I miss.”

How should companies prepare for these changes?

Jason Schulze’s advice to companies focuses on training, “Companies should receive concise training regarding the revisions within AMS2750F, including administrative and technical. As with any training, continuous courses may be necessary to ensure comprehension. I recommend performing a characteristic accountability for each and every requirement stated within AMS2750F.”

Peter Sherwin encourages companies to ready instrumentation for the standards, “Recent feedback from the MTI indicated that 3rd party audits to the new standard would probably start next year. However, if you are in the market for a new instrument then it only makes sense to ensure this meets the requirements of the updated standard.”

Doug Shuler sees the benefit of analysis, “Users should prepare by performing an internal or perhaps an external gap analysis to establish where their pyrometry system is today, and what has to be changed going forward.  Users don’t have to wait until AMS2750F and AC7102/8 Rev A are released and in effect before making changes.  The key is that if a user has an audit before the revised Nadcap Checklist AC7102/8 Rev A becomes the law of the land, they will have to declare compliance to AMS2750E or AMS2750F in full and will be held to that revision’s requirements.  Once AC7102/8 Rev A takes effect (best guess after January 1, 2021)  all audits will be done to AMS2750F.”

Andrew Bassett recommends, “First and foremost, get a copy of AMS2750F and start the review process. Since the document was a complete re-write, there is no change summary or change bars to point the supplier in the direction of what has changed. Spend time creating a matrix of the previous requirements (AMS2750E) and comparing to the new requirements (AMS2750F). I would suggest breaking this matrix down into four main sections: Thermocouples, Calibrations, System Accuracy Testing, and Temperature Uniformity Surveys. This will allow suppliers to work on each section without getting overwhelmed by the entirety of the specification. Currently at the time of writing this, there is no formal implementation requirement for AMS2750F. Typically this will either be dictated by the suppliers’ customers, or in the case of Nadcap, they will issue a “Supplier Advisory” as to when their expectation for implementation will be.”

Final Thoughts

Planning for the future will serve companies well for the long term encourages Doug Shuler,  “With a number of significant changes, nearing a complete rewrite, now is a good time to take a look at your internal procedures that may have become fragmented over the years and streamline them to the new revision.  Auditing for Nadcap for over 10 years has shown me one thing for sure.  Those companies that have a thermocouple procedure, a calibration procedure, a SAT procedure, an alternate SAT procedure, a TUS procedure, and maybe even multiple TUS procedures for different kinds of furnaces (Air, Vacuum, Atmosphere, etc.)  usually have a more difficult time with audits because the SAT procedure also addresses thermocouples, but doesn’t address correction factors because that’s in the instrument calibration procedure… See where this is going?  Consider writing one pyrometry procedure with sections in it just like the specification.  Then, the SAT section can refer to the thermocouple section for test thermocouples and to the instrument section for test instruments, etc.  It’s like re-writing AMS2750, but customized for your facility, your equipment, and your practices.  In the end, remember that the pyrometry portion of your Nadcap audit follows my P.I.E. acronym.  Procedures that Include all requirements and Evidence to show compliance.”

Paying close attention to the right data solution will alleviate potential headaches when dealing with both the new AMS2750F revision and the CQI9 (V.4 update) says Peter Sherwin, “Many commercial heat treaters will also have to cope with the update to CQI9 Version 4 at the same time! According to the MTI, your ‘end’ customers may request you perform your self-audit to the new standard from this point forward. There is a bit more time allocated to move to digital (3 years), but my advice would be to take advantage of digital solutions sooner rather than later. The right data solution should save you money over time compared to the paper alternative.”

Finally, amidst all the new changes AMS 2750F has offered, Jim Oakes assures, “…the pyrometric requirements that most of us are used to will still be very familiar as this document becomes the new standard.”

 

(Photo source: pixabay.com)

 

 

 

 

 

 

 

AMS2750F: Expert Analysis Read More »