SINTERING POWDER METAL NEWS

Binder Removal in Vacuum Sintering

 

Source: TAV: The Vacuum Furnaces Blog

 

Andrea Alborghetti, Technical Manager of TAV Vacuum Furnaces

Heat Treat Today previously posted Parts 1 and 2 of this series on vacuum sintering. Part 1 focused on the two processing steps of debinding and sintering. Part 2 addressed primarily the vacuum sintering furnace itself. This installment analyzes the process and variables involved with binder removal.

Andrea Alborghetti, technical manager of TAV Vacuum Furnaces and contributor to the company’s blog, provides an analysis of burning vs capturing binders, addressing advantages as well as problems that may arise and how to execute control in the process, as in this example:

“One thing that is worth clarifying is that the flames usually seen on the outlet of kilns that use combustible gases (hydrogen, for example) as the process gas, were not originally designed to burn the binder disassociation residues to reduce emissions to the legal limits. Rather, it is solely for disposing of the emitted hydrogen safely, thus avoiding hazardous, potentially explosive atmospheric concentrations being created outside of the kiln.”

Read more for further analysis of binder removal, including discerning the type of residue found with your process: “Perfect Vacuum Sintering Step by Step #3”

Binder Removal in Vacuum Sintering Read More »

The Vacuum Sintering Furnace Examined

Andrea Alborghetti, Technical Manager of TAV Vacuum Furnaces

 

Source: TAV: The Vacuum Furnaces Blog

Following up on the first installment of his series on “perfect vacuum sintering” (linked here), Andrea Alborghetti, technical manager of TAV Vacuum Furnaces and contributor to the company’s blog, provides an overview of the right insulation for a vacuum sintering furnace, an examination of hot zone design, the distribution of gas-flow, and the box for loading and unloading.

Read more: “Perfect Vacuum Sintering Step by Step #2”

The Vacuum Sintering Furnace Examined Read More »

Swedish Group Invests in Titanium, Nickel-Based Metal Powders Production

Annika Roos, head of product area powder at Sandvik Materials Technology

A Swedish engineering group in metal-cutting and materials technology recently announced that it will invest about $24.5 million in a new plant for manufacturing of titanium and nickel fine metal powders near its raw material supply and additive manufacturing center in Sandviken, Sweden.

The group’s investment within Sandvik’s Materials Technology will complement its manufacture of broad stainless steel, nickel-based, and cobalt-chromium alloys in the United Kingdom and Sweden. Sandvik powders reach sectors throughout Europe, North America, and Asia through the Osprey™ brand.

The demand for metal powder for additive manufacturing is expected to increase significantly in the coming years. Titanium and nickel-based alloys are key growth areas in the field of additive manufacturing, accounting for a significant portion of the metal powder market.

“This investment is an enabler for future growth and means that we are expanding our metal powder offering to include virtually all alloy groups of relevance today. In addition, it will also support the overall additive manufacturing business at Sandvik,” said Annika Roos, head of product area powder at Sandvik Materials Technology.

The facility is expected to be operational during 2020.

 

 

Swedish Group Invests in Titanium, Nickel-Based Metal Powders Production Read More »

Aeronautic Supplier Purchases Sintering Ovens

A new sintering line suitable for PTFE insulation has been designed and installed by a manufacturer for a producer of aeronautic cables. This machine is suitable for the thermal treatment of the insulation on conductors with diameter 1-7 inches.

In order to guarantee the uniformity of the process, WTM, which specializes in the application of materials for aircraft and aerospace cables and devices particular attention, focused on the definition of the temperature profile to be applied to the cable passing through the sintering ovens. Considering the maximum cable dimension, WTM, which is located in Austria and Italy opted for the induction preheating in the first part of the equipment. The sintering process occurs successively by means of three infrared ovens, equipped with independent control zones, each of them with a maximum temperature of 1022°F.

Aeronautic Supplier Purchases Sintering Ovens Read More »

AP&C Adds Powder Manufacturing Capacity

Arcam AB, listed on NASDAQ Stockholm, and a leading supplier of Additive Manufacturing (“AM”) equipment, announces that its powder manufacturing subsidiary AP&C in Montreal, Canada, continues to add significant capacity by building three new atomizing reactors. The new capacity increase follows on significant growth in 2015 and a surge in demand for AP&Cs high quality titanium powders.

AP&C continues to build capacity to address the fast growing market for metal powders for additive manufacturing. AP&C’s Plasma technology converts efficiently raw material to powder with excellent key properties such as flowability, density, chemistry and traceability. With the present build-out AP&C will reach a capacity of at least 500 tons per year.

“The need for high end titanium powder is driven by the fast growth and adoption of Additive Manufacturing. Arcam is determined to serve the industry through cost efficient solutions thus converting traditional manufacturing into Additive Manufacturing. A requisite is to offer highest quality powder for production at competitive cost”, says Magnus René, CEO of Arcam.

“With this investment we are committing to supply our present and future customers with superior quality materials to meet the high manufacturing standards of the biomedical and aerospace industries. With the new reactors and atomizing technology advancements, AP&C will triple production capacity in 2016”, says Alain Dupont, President of AP&C.

AP&C Adds Powder Manufacturing Capacity Read More »