Aluminum Aging

Aero/Auto Aluminum Manufacturer Expands Heat Treatment

Taiwan Hodaka Technology, an aerospace and automotive manufacturer, extends its market reach by adding an aluminum aging furnace to its heat treatment capabilities. The furnace, which is designed for aging using T77 technology, will allow the company to meet the highest safety and strength standards. 

This is the first transaction between Taiwan Hodaka Technology, which is involved in the design and processing of parts made of aluminum alloys, and SECO/WARWICK. The furnace operates in the temperature range from 176° to 428°F (80° to 220°C) with a temperature uniformity in the last heating phase, of ±47.4°F (3°C) in accordance with the AMS 2750 standard.

“The solution supplied by SECO/WARWICK will allow us to enter a new market segment. We are a partner for many key players in the aviation industry. The T77 aluminum aging furnace will enable us to serve customer requirements even better. At the same time, the new technology will support our commitment to reducing our impact on the environment,” said Dr. Sam Chiang, vice president for R&D at Taiwan Hodaka Technology Co. Ltd.

Tomasz Kaczmarczyk, Sales Manager of the Aluminum Process and CAB Furnaces Teams, SECO/WARWICK

For heat treated alloys (2xxx, 6xxx and 7xxx series), the letter T and one or more digits are used after the alloy series symbol. The first digit is the most important, as it indicates the type of heat treatment applied to the alloy, while the remaining digits (if provided) indicate heat treatment variants or their modifications. The 7000 series of aluminum alloys have the highest strength of all other aluminum alloy series and are commonly used in aviation since they are held to the highest safety and strength standards.

“T7 denotes the process of solution heat treatment and artificial aging to an overaged state to obtain specific properties, e.g. increased corrosion resistance,” said Tomasz Kaczmarczyk, sales manager of the Aluminum Process and CAB Furnaces Team at SECO/WARWICK. “Sometimes, in addition to the digit denoting the standard heat treatment, an additional digit is used to denote modifications to the given treatment or stress relief procedures. For example, for 7xxx alloys, the symbol T77 denotes retrogression and re-aging. The use of this process improves the alloy’s corrosion resistance, which is so crucial in the production of aircraft parts. The applied technology will allow Taiwan Hodaka Technology to produce high-quality profiles used in the aviation industry in accordance with the AMS standard.” 

Piotr Skarbiński
Vice President of Aluminum and CAB Products Segment
SECO/WARWICK

“The furnace on order equipped with electric heating will process 1500 kg of aluminum profiles with a maximum length of 5500 mm. This is a two-zone solution with a total heating power of 420 kW. The solution for aluminum aging, powered by electric heaters, eliminates the problem of CO2 emissions and is in line with the ecological trend increasingly common in heavy industry,” said Piotr Skarbiński, vice president of the CAB and aluminum products segment at SECO/WARWICK.

The furnace will be used at the company’s newly built plant in Taiwan.

The project partner was PEERENERGY, which offers thermal process consulting, project management, and equipment supply for the aerospace, military equipment, and semiconductor industries.

The press release is available in its original form here.



Aero/Auto Aluminum Manufacturer Expands Heat Treatment Read More »

The Role of Heat Treatment in Space Exploration

Precise heat treating is essential to enable components to withstand space exploration. In this Technical Tuesday, Mike Grande, vice president of Sales at Wisconsin Oven Corporation, discusses the role of aluminum solution treatment and aluminum aging in heat treating space exploration components.

This column was first released in Heat Treat Today March 2024 Aerospace Heat Treat print edition.


Contact us with your Reader Feedback!

In space exploration, the various parts, electronic components, and materials used to make the rockets, crew capsules, rovers, and other equipment, are subjected to brutal extremes of temperature, vacuum, and radiation. In order to withstand these extreme environments without failure, the parts must be manufactured to very tight tolerances and precisely heat treated. Therefore, convection heat treatment emerges as a critical process in the manufacturing of space exploration components and materials, offering tight control over temperature profiles and the microstructure of materials.

Heat treatment involves heating a material to a specific temperature, holding it at that temperature for a certain duration, and then cooling it down at a controlled rate, which can be rapid or gradual, depending on the objective. The purpose of heat treatment is to improve the material’s mechanical properties, such as strength, ductility, and toughness. Probably the most common metal used in space exploration is aluminum. It is an excellent choice for spacecraft components because it is lightweight, durable, and has excellent thermal conductivity, which is necessary for components that need to dissipate heat.

The first stage of the Falcon 9, for example, utilizes four legs used during landing. They are manufactured from an extremely light, rigid, aluminum honeycomb material that also contains carbon fiber and has a very high strength to weight ratio. Another aluminum component common in space exploration is gas transfer tubes, used to transfer gases, such as methane, between chambers in the interior of rocket propulsion systems. Additionally, there are composite overwrapped pressure vessels (COPVs), which carry compressed fuels such as hydrogen and oxygen, among other gases. These are made of an aluminum tank covered with filament-wound, resin-impregnated composite material, which forms an extremely robust structure capable of withstanding the high pressures created by compressed gases and the rigors of high-speed propulsion. For aluminum to be useful in space applications, it must be heat treated to give it the strength and durability required.

Aluminum Solution Treatment

Since aluminum has such widespread use in space exploration, aluminum heat treatment plays a central role in this industry, with solution treatment and aging being the most common heat treatments utilized. All aluminum materials that require high strength are solution heat treated, then subsequently aged, in two separate heat treat processes. The purpose of solution heat treatment is to evenly dissolve the alloys contained in the aluminum, such as manganese, magnesium, copper, zinc, and silicon, and then rapidly quench it to retain the grain structure. The aluminum alloy is heated and held at a temperature of 800°F to 1000°F (420°C to 540°C), which is just below its melting point. The aluminum is then quenched in water or a water/glycol mixture quickly (within 7 to 15 seconds) to essentially “freeze” the microstructure before the alloying elements can redistribute themselves.

Aluminum Aging

After quenching, aluminum is precipitation hardened. Also known as artificial aging, this process involves heating the aluminum at a lower temperature, typically in the range of 200°F to 400°F (93°C to 204°C) for several hours. This final process dramatically increases the hardness, yield strength, and ultimate strength of the aluminum, making it suitable for use in space applications.

A solution treatment system for processing aluminum

The above is just a sample of the many types of heat treatments for materials used in space exploration. Other examples are annealing, tempering, normalizing, and hydrogen embrittlement relief, to name a few. In conclusion, heat treatment plays a critical role in the manufacturing of parts used in space exploration and is essential to the reliability and safety of space missions.

About the Author

Mike Grande, Vice President of Sales, Wisconsin Oven Corporation

Mike Grande has a 30+ year background in the heat processing industry, including ovens, furnaces, and infrared equipment. He has a BS in mechanical engineering from University of Wisconsin-Milwaukee and received his certification as an Energy Manager (CEM) from the Association of Energy Engineers in 2009. Mike is the vice president of Sales at Wisconsin Oven Corporation.

For more information: Contact sales@wisoven.com.

Find Heat Treating Products And Services When You Search On Heat Treat Buyers Guide.Com

The Role of Heat Treatment in Space Exploration Read More »

Manufacturer To Expand Heat Treat Capabilities with Box Furnace

HTD Size-PR Logo

Bill St. Thomas
Business Development Manager
Lindberg/MPH
Source: Lindberg/MPH.com

A manufacturer is expanding their heat treat capacities with a new box furnace, designed for air atmosphere applications, from a North American furnace provider.

Lindberg/MPH's heat treat furnace has a maximum temperature rating of 1,250°F and a load capacity of 6,000 lbs and is designed to accept fixtures that are 48" wide by 84" deep by 48" high. A full-width roller hearth is located across the furnace chamber floor for manual loading and load support. Temperature is controlled by a Honeywell DC2500 Series controller with an adjustable alarm set-point and latching output relay; the controller disconnects the power to the heating elements and sounds an audible alarm in an event that temperature exceeds desired set-point.

“The high velocity forced heating system circulates heat evenly within the furnace chamber," commented Bill St. Thomas, business development manager at Lindberg/MPH. "[This] assures rapid and uniform heat transfer throughout the workload.”


Find heat treating products and services when you search on Heat Treat Buyers Guide.com


Manufacturer To Expand Heat Treat Capabilities with Box Furnace Read More »

Leading Automotive Tier 1 Supplier Orders Eight Custom Furnaces

A leading tier 1 automotive supplier recently placed a large order for eight (8) custom designed walk-in ovens for aluminum aging of automotive parts with furnace manufacturer DELTA H.

(source: DELTA H)

The ovens will be qualified at class 2 (+/-10°F) and feature all necessary performance requirements for compliance to CQI-9 and AMS2750E specifications. DELTA H collaborated with the customer for 6 months on the design and approval phase.

All 8 ovens will be commissioned in late summer 2020.

 

 

 

(source: Erik Mclean/DELTA H)

Leading Automotive Tier 1 Supplier Orders Eight Custom Furnaces Read More »

Weldaloy’s Aluminum Heat-treating Capacity Increased

On the heels of a recent expansion of their seamless rolled ring capabilities, Weldaloy continues to grow with the addition of a new low temperature aluminum aging oven. The new oven will increase Weldaloy’s aluminum heat-treating capacity.

Ovens created specifically for aluminum can reduce cycle times and increase productivity by optimizing temperature uniformity through adequate airflow. This translates to a better product that can be made in a repeatable recipe.

“We’re receiving more and more requests for large aluminum work, so we needed to add this low temperature aluminum aging oven to be able to increase our capacity and meet production needs. This addition will allow us to produce more parts in the same amount of time for our customers while maintaining quality,” said Kurt Ruppenthal, Vice President & General Manager at Weldaloy.

Many of the new opportunities for aluminum work have come from the oil and gas industry and the aerospace industry, as well as from the private space sector. Weldaloy recently achieved the AS9100C certification for their Quality Management System, which has opened the door for them to work with more aerospace companies that require certification of their suppliers.

“We look forward to continuing to grow our aluminum capabilities to meet the increase in demand,” said Ruppenthal.

Weldaloy’s Aluminum Heat-treating Capacity Increased Read More »