Gregory Scheuring

Bundle Up for Fall with 4 Vacuum Heat Treat Articles

OCGetting excited for the November print edition? In 2021, Heat Treat Today released the inaugural Vacuum Heat Treating print edition. This edition is set to release every November to help heat treaters better work their vacuum furnaces and vacuum heat treat processes. 

This Technical Tuesday original content round-up shares the hottest vacuum heat treating articles from this past year as you bundle up for the cool weather this fall. Enjoy!


Graphite in Vacuum Furnace Fixturing

The Use of Graphite for Vacuum Furnace Fixturing

Let's talk about carbon/carbon composite --- C/C.

Why is the vacuum furnace industry excited about its use in graphite vacuum furnace fixtures, grids, and leveling components? Because it can be readily machined for special shapes and applications. The lighter-weight material is mostly composed of carbon fibers and a carbon matrix (or binder).

Contact us with your Reader Feedback!

As the authors of this article explain, "They are among the strongest and lightest high temperature engineered materials in the world compared to other materials such as basic graphite, ceramics, metal, or plastic. C/C composites are lightweight, strong, and can withstand temperatures of over 3632°F (2000°C) without any loss in performance." Intrigued, are you not?

Read the article by Solar Atmosphere's Roger Jones and Real J. Fradette, "The Use of Graphite for Vacuum Furnace Fixturing."

 

Step-by-Step Guide To Choose Heat Treating Equipment (English / Español)

If it's time to choose an industrial furnace, let's break it down step by step:

Step One: Quote Request

Step Two: Supplier Selection

Step Three: Study and Evaluation of Offers

Step Four: The Price

Follow this guide and avoid saying things like "The substation and/or the cooling tower did not have the capacity"; "The equipment is not what we expected"; or “They never told us that the furnace needed gas in those capabilities." If there are steps you take when selecting an industrial furnace, let us know in a Reader Feedback note here.

Read the article by Carrasco Hornos Industriales' Carlos Carrasco, "A Guide to Selecting Heat Treating Equipment" or "Guía para la Selección de Equipos para Tratamiento Térmico."

 

Pressure vs. Velocity and the Size of Your Furnace

Vacuum Gas Cooling: Pressure vs. Velocity, Part 1 of 2

If you like the R&D world of heat treat, but also like to be grounded in practical heat treat solutions, this is the article for you. Read about what this commercial heat treat found out about how size relates to the pressure and velocity of vacuum furnace cooling rates. Here are the facts you will learn:

  1. The greatest impact on the cooling performance in a vacuum furnace is to increase the___ ______ within ___ _____.
  2. This is achieved by ______ __ ______ of the ______ ____.

Read the article by Solar Atmosphere's Robert Hill and Gregory Scheuring, "Vacuum Gas Cooling: Pressure vs. Velocity, Part 1 of 2."

 

Energy at Large: A Heat Treat Vacuum Furnace Case Study

Harnessing the Sun: A Heat Treat Case Study with General AtomicsIf you like to read about how heat treaters can be game changers in multinational science projects, this is the article for you. A specially designed vacuum heat treat furnace was commissioned to heat treat critical components in a large energy generator. The heat treating of these components takes 5 weeks to complete; talk about a long, uniform heat treat period.

Read about the energy experiment, the heat treat furnace, and the heat treating process in this technical feature.

Read the article by SECO/VACUUM's Rafal Walczak, "Harnessing the Sun: A Heat Treat Case Study with General Atomics."


Find heat treating products and services when you search on Heat Treat Buyers Guide.com


 

Bundle Up for Fall with 4 Vacuum Heat Treat Articles Read More »

Vacuum Gas Cooling: Pressure vs. Velocity, Part 1 of 2

OCThere is an age-old adage that exists in the heat treating world. That supposition states that “the smaller the vacuum furnace, the faster it will quench.” Is this adage true? Explore Solar Atmospheres’ journey as they designed an experiment to discover if pressure or velocity most affects cooling performance.

This Technical Tuesday was written by Robert Hill, FASM, president, and Gregory Scheuring, plant metallurgist, both from Solar Atmospheres. The article originally appeared in Heat Treat Today’s March 2022 Aerospace Heat Treating print edition.


Introduction

Our study compared the cooling rates of two distinctly sized High Pressure Gas Quenching (HPGQ) vacuum furnaces — a large 10-bar vacuum furnace equipped with a 600 HP blower motor versus a smaller 10-bar vacuum furnace equipped with a 300 HP motor. Both furnaces, one with a 110 cubic feet hot zone, the other with a 40 cubic feet hot zone, were exclusively engineered and manufactured by Solar Manufacturing located in Sellersville, PA.

History

High Pressure Gas Quenching in the heat treatment of metals has made tremendous strides over recent years. Varying gas pressures within the chamber have been shown to be more governable than their oil and water quenching counterparts. The number one benefit of gas cooling versus liquid cooling remains the dimensional stability of the component being heat treated. In addition, using gas as a quench media dramatically mitigates the risk of crack initiation in a component. This is primarily due to the temperature differentials during cooling. Gas quenching cools strictly by convection. However, the three distinct phases of liquid quenching (vapor, vapor transport, and convection) impart undue stress into the part causing more distortion (Figure 1).

Figure 1. Three phases of liquid quenchants
Source: Solar Atmospheres

There are multiple variables involved with optimizing gas cooling. These include the furnace design, blower designs, heat exchanger efficiency, gas pressure, gas velocities, cooling water temperatures, the gas species used, and the surface area of the workpieces. Whenever these variables remain constant, the relative gas cooling performance of a vacuum furnace typically increases as the volume of the furnace size decreases.

The Furnace

Solar Manufacturing has built multiple high pressure gas quenching furnaces of varying sizes over the years ranging from 2 to 20-bar pressure. We have learned that vacuum furnaces, rated at 20-bar and above, became restrictive in both cost constraints and diminishing cooling improvements. Therefore, Solar Manufacturing engineers began to study gas velocities to improve cooling rates. They determined increasing the blower fan from 300 HP to 600 HP, along with other gas flow improvements, would substantially increase metallurgical cooling rates. The technology was reviewed and determined to be sound. A 48” wide x 48” high x 96” deep HPGQ 10-bar furnace, equipped with this newest technology, was purchased by Solar Atmospheres of Western PA located in Hermitage, PA.

The Test

Image 3. Test load with thermocouple placement
Source: Solar Atmospheres

Once this new vacuum furnace was installed, a cooling test was immediately conducted. A heavy load would be quenched at 10-bar nitrogen in an existing HFL 50 sized furnace (36” x 36” x 48”). The same cycle was repeated in the newly designed vacuum furnace almost three times its size! (Images 1 and 2).

The load chosen for the experiment was 75 steel bars 3” OD x 17” OAL weighing 34 lbs each. The basket and grid system supporting the load weighed 510 lbs. The total weight of the entire load was 3060 lbs. Both test runs were identically thermocoupled at the four corners and in the center of the load. All five thermocouples were deeply inserted (6" deep) into ¼" holes at the end of the bars (Image 3). Each load also contained two 1" OD x 6" OAL metallographic test specimens of H13 hot working tool steel. These specimens were placed near the center thermocouple to ensure the “worst case” in terms of quench rate severity. All tests were heated to 1850°F for one hour and 10-bar nitrogen quenched.

Results

The comparative cooling curves between both HPGQ vacuum furnaces are shown in Chart 1. Table 1 reveals that in the critical span of 1850°F to 1250°F for H13 tool steel, the cooling rate in the larger furnace with more horsepower nearly matched the cooling rate of the furnace three times smaller in size.

Table 1. Critical cooling rates for H13 (1850°F –1250°F)
Source: Solar Atmospheres

Chart 1. Average quench rate for five thermocouples
Source: Solar Atmospheres

Micrographs of the H13 test specimens processed in each load were prepared (Images 4 and 5). The microstructure of each test specimen is characterized by a predominantly tempered martensitic microstructure with fine, undissolved carbides. The consistency of the microstructure across both trial loads further demonstrates that while the larger furnace utilized the higher horsepower, both resulted in a critical cooling rate sufficient to develop a fully martensitic microstructure.

 

Conclusions

These tests prove that the greatest impact on the cooling performance in a vacuum furnace is to increase the gas velocity within that chamber. This was achieved primarily by increasing the horsepower of the blower fan. By doing this, the ultimate cost to the customer is significantly less than manufacturing a higher pressure coded vessel. This newly designed vacuum furnace has proven to be a game changer.

Part II of this article will discuss real life case studies and how both Solar and Solar’s customers have mutually benefited from this newest technology.

About the Author:

Source: Solar
Robert (Bob) Hill, FASM
President
Solar Atmospheres of Western PA
Source: Solar Atmospheres

Robert Hill, FASM, president of Solar Atmospheres of Western PA, began his career with Solar Atmospheres in 1995 at the headquarters plant located in Souderton, Pennsylvania. In 2000, Mr. Hill was assigned the responsibility of starting Solar Atmospheres’ second plant, Solar Atmospheres of Western PA, in Hermitage, Pennsylvania, where he has specialized in the development of large vacuum furnace technology and titanium processing capabilities. Additionally, he was awarded the prestigious Titanium Achievement Award in 2009 by the International Titanium Association.

For more information contact Robert at bob@solaratm.com


Find heat treating products and services when you search on Heat Treat Buyers Guide.com


 

Vacuum Gas Cooling: Pressure vs. Velocity, Part 1 of 2 Read More »

A Dozen Quick Heat Treat News Items to Keep You Current

A Dozen Quick Heat Treat News Items to Keep You Current

Heat Treat Today offers News Chatter, a feature highlighting representative moves, transactions, and kudos from around the industry.

Personnel and Company Chatter

  • Gregory Scheuring has joined Solar Atmospheres of Western PA (SAWPA) as plant metallurgist.
  • Precise Metal Products, a leading manufacturer of complex metal assemblies for many of the world’s largest aerospace and defense companies, was recently acquired by an affiliate of Staple Street Capital in partnership with Thompson Capital Partners.
  • A leading global provider of high-performance specialty materials used in thermal management, emission control, batteries, specialty filtration and fire protection applications recently signed a definitive agreement to acquire the assets of Shenyang JiuQing Dongxiang Glass Product Co. Ltd, a leading provider of high-performance specialty fibers in China. Unifrax, which is backed by Clearlake Capital Group, L.P., acquired the assets from the Li family.
  • American Axle & Manufacturing Holdings, Inc. (AAM) recently announced that it has entered into a definitive agreement to sell its U.S. iron casting operations to funds managed by Gamut Capital Management. Across 10 manufacturing facilities, Grede develops, manufactures, assembles and supplies ductile, gray, and specialty iron castings and machined components for automotive, commercial vehicle and industrial markets.  AAM will retain its El Carmen, Mexico, iron casting operations, which will continue to provide significant vertical integration benefits to AAM, while also continuing to serve external customers in Mexico and other global markets.
  • Magnetic Specialties, Inc. (MSI), which manufactures heavy-duty power supplies for the electric furnace industry, specialty transformers and reactors for various industries, and smaller specialty transformers for the electrical and electronic industry, announced the construction of a new 4,800 SF addition to its plant space in Telford, Pennsylvania. Mike Afflerbach, President of MSI, said the building addition is essential for added efficiencies and expansion of useable floor space in his main manufacturing building.

  • A nitriding system was supplied to Hydro Extrusion Solutions in Trzcianka, Poland, to address the company’s need for improved process performance and more accurate control of nitriding results. The Nitrex N-EXT 812 nitriding system provided by Nitrex Metals replaces a decommissioned nitrider that was phased out several years ago due to extrusion die failures and inconsistent metallurgical results.
  • An electric annealing furnace was manufactured for a major manufacturer by Gasbarre Thermal Processing Systems. This is the second 48″ wide belt furnace Gasbarre has supplied this company. The furnace came equipped with 3 heating zones that can heat up to 1200 degrees Fahrenheit.
  • A 350°F (177°C) clean room oven, No. 1048, being used for the final cure of hardcoated optical lenses, was recently supplied by Grieve to the customer at its facility.
  • A leading manufacturer of calcium phosphate materials used for medical devices recently purchased a furnace from L&L Special Furnace Co, Inc. This is the fifth Model GS1714 furnace shipped to this company. The calcium phosphate powder is sintered in the furnace at a temperature of about 2,200°F (1,204°C).
  • ALD recently delivered a SyncroTherm system to a well-known institute in the Beijing area, the first for the Chinese market.

  • Novelis’ Terre Haute, Indiana, facility recently celebrated 60 years with its 160 employees. Current and retired employees, their families and community leaders attended the celebration.
  • The Industrial Heating Equipment Association’s (IHEA) Infrared Equipment Division (IRED) recently completed revisions to its popular Infrared Process Heating Handbook for Industrial Applications. This quick introduction to the many applications of infrared heating in industrial processes has been updated to include new technical information, additional application examples, and new case studies.


Heat Treat Today is pleased to join in the announcements of growth and achievement throughout the industry by highlighting them here on our News Chatter page. Please send any information you feel may be of interest to manufacturers with in-house heat treat departments especially in the aerospace, automotive, medical, and energy sectors to the editor at editor@heattreattoday.com

A Dozen Quick Heat Treat News Items to Keep You Current Read More »